화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.460, No.2, 227-232, 2015
Design, expression, and characterization of a novel dendritic cell-targeted proteins
In vivo approaches to inducing an effective immune response focus on targeted antigen (Ag) delivery to dendritic cells (DCs). In this study, we developed a new method of targeting plasmid DNA and/or the antigen (Ag) antibody (Ab) complex to DCs via the DC receptor DEC-205, also known as cluster of differentiation CD205. We cloned and expressed a recombinant protein composed of mouse DEC-205-specific single-chain fragment variable region (mDEC-205-scFv), the streptococcal protein G (SPG) IgG-binding domain and cationic peptide (CP), which named mDEC205-scFv-SPG-CP (msSC). In vitro, the recombinant protein msSC can specifically bind to DCs through the section of mDEC-205-scFv, and bound the Ag Ab complex via SPG as well as plasmid DNA through electrostatic bonding with CP in vitro. In addition, msSC functioned in a manner similar to anti-DEC-205 monoclonal Ab and bound to mouse bone marrow-derived DCs. It was demonstrated in vivo that msSC can target plasmid DNA to DCs, resulting in efficient uptake and expression. Moreover, msSC can form a complex with pGL3-CMV and transport it to draining lymph nodes when injected in vivo. These results indicate that msSC can be used as a carrier protein for vaccine delivery to DCs via formation of plasmid DNA-Ag-Ab ternary complexes. (C) 2015 Elsevier Inc. All rights reserved.