Biochemical and Biophysical Research Communications, Vol.458, No.1, 104-109, 2015
Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts
Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radiosensitive, DNA damage pathways including p53 pathway are activated to undergo either G(1)/S or G(2)/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in Go, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10-1 Gy of gamma-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 33 inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. (C) 2015 Elsevier Inc. All rights reserved.