Biomacromolecules, Vol.16, No.8, 2276-2281, 2015
Shape Transformation of Light-Responsive Pyrene-Containing Micelles and Their Influence on Cytoviability
The amphiphilic pyrene-containing random copolymers with light-responsive pyrene ester bonds were synthesized by copolymerizing 1-pyrenemethyl acrylate (PA) and N,N-dimethylacrylamide (DMA). The P(DMA-co-PA) copolymers formed spherical micelles in water, which were transformed into nanorods as a result of cleavage of the pyrene ester bonds under UV irradiation. In vitro culture with A549 cells and Raw cells showed that compared to the nonphotodegradable ones, the photodegradable P(DMA-co-PA) micelles caused significantly higher cytotoxicity under the same UV irradiation. The intracellular reactive oxygen species (ROS) level had a positive correlation with the cytotoxicity regardless of the cell types. The nonphotodegradable pyrene-containing micelles produced a lower level of ROS under UV irradiation. However, the photodecomposable P(DMA-co-PA) micelles produced a significant higher level of ROS under the same trigger of UV irradiation, which caused the shape transformation of micelles to nanorods simultaneously. and higher cytotoxicity