화학공학소재연구정보센터
Current Applied Physics, Vol.15, No.9, 977-986, 2015
Modeling of pulsed spark discharge in water and its application to well cleaning
This paper presents a simulation model for the generation of strong pressure wave by means of pulsed spark discharge in water and its application to well cleaning. In the simulation model, one-dimensional time-dependent magnetohydrodynamic equations are coupled to a capacitive discharge circuit equation. A cylindrical conducting spark channel formed by electrical breakdown of water gap between a pair of electrodes is treated as a load of which resistance and inductance are allowed to change with time. For describing the spark channel properties accurately, precise calculations on thermodynamic properties and electrical conductivity are included in the simulation model. The simulation results show an excellent agreement with the experimentally measured shock pressure as well as the current and voltage waveforms. The simulation reveals that Joule heating of the spark channel during the very early phase of electrical discharge plays a key role in the formation of shock wave in water. The voltage on a capacitor at breakdown, the circuit inductance, and the resistance of the spark channel are found to be the most important parameters for the shock wave formation. With this technique, a pilot test for the cleaning of a clogged well has been performed in a water well which was constructed as a test-bed for riverbank filtration near the Anseong-cheon (river) in Korea. Well treatments have been carried out with an electrical energy of 510 J stored on a pulsed power system, at which the maximum shock pressure is measured to be around 7 MPa at the position of the well screen, i.e. 0.1 m away from the spark gap. A slug test shows 2.9 times improvement in the hydraulic conductivity of the well, which, combined with a visual inspection inside the well using an underwater camera, clearly demonstrates that the strong pressure wave generated by underwater spark discharge can effectively remove almost all incrustations formed in the well screen and thus improve well performance. Operating parameters for controlling the strength of shock pressure are discussed using the simulation model for extensive applications of the present technique to various types of water wells. (C) 2015 Elsevier B.V. All rights reserved.