Journal of Catalysis, Vol.336, 23-32, 2016
Propane-to-propene oxide oxidation on silica-supported vanadium catalysts with N2O as an oxidant
Propane-to-propene oxide oxidation was carried out at 673 and 703 K and for different contact times on vanadium catalyst supported on mesoporous silica of SBA-3 structure in the presence of N2O as an oxidant. For comparison, direct propene epoxidation was also investigated. Vanadium catalysts for propane oxidation undergo deactivation with time on stream. It was noted that the higher the reaction temperature the faster the deactivation. The very small amount of coke deposit in the spent catalyst would indicate that the vanadium reduction is responsible for catalyst deactivation. FT-IR spectroscopy was used to study the adsorbed surface species involved in the selective propane oxidation. Considering the alteration of selectivity toward oxygen-bearing products with propane/propene conversion influenced by reaction temperature and contact time, some tentative reaction paths for the selective oxidation of propane have been proposed. (C) 2016 Elsevier Inc. All rights reserved.