화학공학소재연구정보센터
Journal of Chemical and Engineering Data, Vol.61, No.3, 1280-1295, 2016
Thermodynamic Limitations of the CO2/N-2 Mixture Injected into CH4 Hydrate in the Ignik Sikumi Field Trial
The huge resources of energy in the form of natural gas hydrates are widely distributed worldwide in permafrost sediments as well as in offshore sediments. A novel technology for combined production of these resources and safe long terms storage of carbon dioxide is based on the injection of carbon dioxide injection into in situ methane hydrate filled sediments. This will lead to an exchange of the in situ methane hydrate over to carbon dioxide dominated hydrate and a simultaneous release of methane gas. Recent theoretical and experimental results indicate that the conversion from natural gas hydrate to carbon dioxide hydrate and mixed carbon dioxide/methane hydrate follows two primary mechanisms. Direct solid state transformation is possible but very slow. The dominating mechanism involves formation of a new hydrate from injected carbon dioxide and associated dissociation of the in situ natural gas hydrate by the released heat. Nitrogen is frequently added in order to increase gas permeability and to reduce blocking due to new hydrate formation. In this work we examine the thermodynamic limitations of adding nitrogen. On the basis of state of the art thermodynamic analysis it is concluded that substantial amounts of nitrogen in carbon dioxide will slow down the conversion dramatically.