Journal of Physical Chemistry A, Vol.120, No.9, 1577-1587, 2016
Electron Paramagnetic Resonance Spectroscopic Study on Nonequilibrium Reaction Pathways in the Photolysis of Solid Nitromethane (CH3NO2) and D3-Nitromethane (CD3NO2)
Thin films of nitromethane (CH3NO2) along with its isotopically labeled counterpart D3-nitromethane (CD3NO2) were photolyzed at discrete wavelength between 266 nm (4.7 eV) and 121 nm (10.2 eV) to explore the underlying mechanisms involved in the decomposition of model compounds of energetic materials in the condensed phase at S-K. The chemical modifications of the ices were traced in situ via electron paramagnetic resonance, thus focusing on the detection of (hitherto elusive) reaction intermediates and products with unpaired electrons. These studies revealed the formation of two carbon centered radicals [methyl (CH3), nitromethyl (CH2NO2)], one oxygen-centered radical [methoxy (CH3O)], two nitrogen-centered radicals [nitrogen monoxide (NO), nitrogen dioxide (NO2)], as well as atomic hydrogen (H). The decomposition products of these channels and the carbon-centered nitromethyl (CH2NO2) radical in particular represent crucial reaction intermediates leading via sequential molecular mass growth processes in the exposed nitromethane samples to complex organic molecules as predicted previously by dynamics calculations. The detection of the nitromethyl (CH2NO2) radical along with atomic hydrogen (H) demonstrated the existence of a high-energy decomposition pathway, which is closed under collisionless conditions in the gas phase.