화학공학소재연구정보센터
Science, Vol.350, No.6262, 787-790, 2015
Imaging resonances in low-energy NO-He inelastic collisions
In molecular collisions, resonances occur at specific energies at which the colliding particles temporarily form quasibound complexes, resulting in rapid variations in the energy dependence of scattering cross sections. Experimentally, it has proven challenging to observe such scattering resonances, especially in differential cross sections. We report the observation of resonance fingerprints in the state-to-state differential cross sections for inelastic NO-He collisions in the 13 to 19 centimeter(-1) energy range with 0.3 centimeter(-1) resolution. The observed structures were in excellent agreement with quantum scattering calculations. They were analyzed by separating the resonance contributions to the differential cross sections from the background through a partitioning of the multichannel scattering matrix. This revealed the partial-wave composition of the resonances and their evolution during the collision.