Science, Vol.349, No.6251, 974-977, 2015
Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord
Glycerophospholipids, the structural components of cell membranes, have not been considered to be spatial cues for intercellular signaling because of their ubiquitous distribution. We identified lyso-phosphatidyl-beta-D-glucoside (LysoPtdGlc), a hydrophilic glycerophospholipid, and demonstrated its role in modality-specific repulsive guidance of spinal cord sensory axons. LysoPtdGlc is locally synthesized and released by radial glia in a patterned spatial distribution to regulate the targeting of nociceptive but not proprioceptive central axon projections. Library screening identified the G protein-coupled receptor GPR55 as a high-affinity receptor for LysoPtdGlc, and GPR55 deletion or LysoPtdGlc loss of function in vivo caused the misallocation of nociceptive axons into proprioceptive zones. These findings show that LysoPtdGlc/GPR55 is a lipid-based signaling system in glia-neuron communication for neural development.