화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.36, 238-244, April, 2016
Optimum engineering of a PtSn alloys/reduced graphene oxide nanohybrid for a highly efficient counter electrode in dye-sensitized solar cells
E-mail:
Well-dispersed Pt1-xSnx alloy nanoparticles (NPs) were stabilized with RGO after a co-reduction of metal precursor ions and graphene oxide via a dry plasma reduction under an atmospheric pressure and close to room temperature. The highest electrocatalytic performance, which corresponds to the lowest charge transfer resistance of 1.12 Ω, is achieved with the Pt0.9Sn0.1 NPs/RGO nanohybrid. The application of the optimized Pt0.9Sn0.1 NPs/RGO nanohybrid as an alternative CE for DSCs results in an increase of the efficiency by 14.67% over that of a Pt/RGO-based DSC and an increase of 48.96% over the efficiency of a Pt-free device.
  1. O’Regan B, Gratzel M, Nature, 353, 737 (1991)
  2. Papageorgiou N, Coordin. Chem. Rev., 248, 1421 (2004)
  3. Tang Q, Zhang H, Meng Y, He B, Yu L, Angew. Chem.-Int. Edit., 54, 11448 (2015)
  4. He B, Meng X, Tang Q, ACS Appl. Mater. Interfaces, 6, 4812 (2014)
  5. Wan JW, Fang GJ, Yin HJ, Liu XF, Liu D, Zhao MT, Ke WJ, Tao H, Tang ZY, Adv. Mater., 26(48), 8101 (2014)
  6. Shi YT, Zhao CY, Wei HS, Guo JH, Liang SX, Wang AQ, Zhang T, Liu JY, Ma TL, Adv. Mater., 26(48), 8147 (2014)
  7. Kim SS, Park KW, Yum JH, Sung YE, J. Photochem. Photobiol. A-Chem., 189, 301 (2007)
  8. Dao VD, Choi Y, Yong K, Larina LL, Shevaleevskiy O, Choi HS, J. Power Sources, 274, 831 (2015)
  9. Dao VD, Choi Y, Yong K, Larina L, Choi HS, Carbon, 84, 383 (2015)
  10. Yun S, Wang L, Zhao C, Wang Y, Ma T, Phys. Chem. Chem. Phys., 15, 4286 (2013)
  11. Dao VD, Nang LV, Kim ET, Lee JK, Choi HS, ChemSusChem, 6, 1316 (2013)
  12. Yoon SW, Dao VD, Larina L, Lee JK, Choi HS, Carbon, 96, 229 (2016)
  13. Dao VD, Tran QC, Ko SH, Choi HS, J. Mater. Chem. A, 1, 4436 (2013)
  14. Dao VD, Larina L, Suh H, Hong K, Lee JK, Choi HS, Carbon, 77, 980 (2014)
  15. Li HQ, Sun GQ, Cao L, Jiang LH, Xin Q, Electrochim. Acta, 52(24), 6622 (2007)
  16. Guo YL, Zheng YZ, Huang MH, Electrochim. Acta, 53(7), 3102 (2008)
  17. Chen X, Hou Y, Yang S, Yang XH, Yang HG, J. Mater. Chem. A, 2, 17253 (2014)
  18. Wu G, Swaidan R, Cui GF, J. Power Sources, 172(1), 180 (2007)
  19. Ladewig B, Jiang SP, Yan Y, Materials for Low-Temperature Fuel Cells (New Materials for Sustainable Energy and Development) 1st Edition, Wiley-VCH Verlag GmbH & Co. KGaA Boschstr. 12, 69469 Weinheim, Germany, 2015.
  20. Jeong H, Pak Y, Hwang Y, Song H, Lee KH, Ko HC, Jung GY, Small, 8, 3757 (2012)
  21. Jeon SS, Kim C, Ko J, Im SS, J. Phys. Chem. C, 115, 22035 (2011)
  22. Dao VD, Kim SH, Choi HS, Kim JH, Park HO, Lee JK, J. Phys. Chem. C, 115, 25529 (2011)
  23. Jang SY, Kim YG, Kim DY, Kim HG, Jo SM, ACS Appl. Mater. Interfaces, 4, 3500 (2012)
  24. Kwon W, Kim JM, Rhee SW, Electrochim. Acta, 68, 110 (2012)
  25. Pan J, Wang L, Yu JC, Liu G, Cheng HM, Chem. Commun., 50, 7020 (2014)
  26. He BL, Meng X, Tang QW, Li PJ, Yuan SS, Yang PZ, J. Power Sources, 260, 180 (2014)
  27. Xu C, Hou J, Pang X, Li X, Zhu M, Tang B, AAPG Bull., 37, 10489 (2012)
  28. Toda T, Igarashi H, Watanabe M, J. Electroanal. Chem., 460(1-2), 258 (1999)
  29. Hod I, Tachan Z, Shalom M, Zaban A, J. Phys. Chem. Lett., 2, 3032 (2011)
  30. Yun S, Wu M, Wang Y, Shi J, Lin X, Hagfeldt A, Ma T, ChemSusChem, 6, 411 (2013)
  31. Han L, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R, Appl. Phys. Lett., 86, 213501 (2005)
  32. Ju M, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK, ACS Nano, 7, 5243 (2013)