화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.4, 314-322, April, 2016
Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance
E-mail:, ,
Design of support layer structures for asymmetric thin film composite membranes has drawn keen attention to improve the power density for salinity gradient power based on pressure-retarded osmosis. This study has interests on electrospun nanofiber-based support layers, and the effects of its open pore sizes are attractively stated. To control the open pore size, a counter charge deposition method was introduced. To retain the open pore size, all the nanofibers were interconnected by a post co-solvent treatment technology. For a thin film composite membrane, an interfacial polymerization was used to fabricate a polyamide active layer on the electrospun nanofiber-based support layers. It was found that although the maximum power density achieved with an open pore size of 2.4 μm2 was 0.14 W/m2, it increased significantly up to 9.5 W/m2 when the pore size was reduced to 0.65 μm2. The cause is the salt flux which increases with increasing the open pore sizes under applied pressures.
  1. Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103 (2009)
  2. Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T, Desalination, 224(1-3), 64 (2008)
  3. Dai A, Treberth KE, J. Hydrometeorol., 3, 660 (2002)
  4. Mantia FL, Pasta M, Deshazer HD, Logan BE, Cui Y, Nano Lett., 11, 1810 (2011)
  5. Logan BE, Elimelech M, Nature, 488(7411), 313 (2012)
  6. She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262 (2012)
  7. Ingole PG, Choi W, Kim KH, Park CH, Choi WK, Lee HK, Chem. Eng. J., 243, 137 (2014)
  8. Patel R, Chi WS, Ahn SH, Park CH, Lee HK, Kim JH, Chem. Eng. J., 247, 1 (2014)
  9. Ingole PG, Kim KH, Park CH, Choi WK, Lee HK, RSC Adv., 4, 51430 (2014)
  10. Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN, J. Membr. Sci., 288(1-2), 218 (2007)
  11. Chen SC, Wan CF, Chung TS, J. Membr. Sci., 479, 190 (2015)
  12. Dlugolecki P, Nymeijer K, Metz S, Wessling M, J. Membr. Sci., 319(1-2), 214 (2008)
  13. Gao J, Guo W, Feng D, Wang HT, Zhao DY, Jiang L, J. Am. Chem. Soc., 136(35), 12265 (2014)
  14. Feinberg BJ, Ramon GZ, Hoek EMV, J. Membr. Sci., 476, 311 (2015)
  15. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M, Environ. Sci. Technol., 45, 4360 (2011)
  16. Roh IJ, Kim JJ, Park SY, J. Membr. Sci., 197(1-2), 199 (2002)
  17. Song X, Liu Z, Sun DD, Energy Environ. Sci., 6, 1199 (2013)
  18. Wang M, Jin HJ, Kaplan DL, Rutledge GC, Macromolecules, 37(18), 6856 (2004)
  19. Huang LW, Manickam SS, McCutcheon JR, J. Membr. Sci., 436, 213 (2013)
  20. Bui NN, Lind ML, Hoek EMV, McCutcheon JR, J. Membr. Sci., 385-386, 10 (2011)
  21. Bui NN, McCutcheon JR, Environ. Sci. Technol., 47, 1761 (2012)
  22. Huang LW, Arena JT, Manickam SS, Jiang XQ, Willis BG, McCutcheon JR, J. Membr. Sci., 460, 241 (2014)
  23. She QH, Hou DX, Liu JX, Tan KH, Tang CYY, J. Membr. Sci., 445, 170 (2013)
  24. Catalani LH, Collins G, Jaffe M, Macromolecules, 40(5), 1693 (2007)
  25. Park CH, Kim KH, Lee JC, Lee J, Polym. Bull., 61(4), 521 (2008)
  26. Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S, Desalination, 279(1-3), 201 (2011)
  27. Yoon K, Hsiao BS, Chu B, Polymer, 50(13), 2893 (2009)
  28. Park CH, Kim JH, Ree M, Sohn BH, Jung JC, Zin WC, Polymer, 45(13), 4507 (2004)
  29. Hong S, Schaber CF, Dening K, Appel E, Gorb SN, Lee H, Adv. Mater., 26(45), 7581 (2014)
  30. Park CH, Lee J, Macromol. Mater. Eng., 295, 544 (2010)
  31. Miller-Chou BA, Koenig JL, Prog. Polym. Sci, 28, 1223 (2003)
  32. Lee KL, Baker RW, Lonsdale HK, J. Membr. Sci., 8, 141 (1981)
  33. Chou SR, Shi L, Wang R, Tang CYY, Qiu CQ, Fane AG, Desalination, 261(3), 365 (2010)
  34. Bouazizi S, Nasr S, J. Mol. Liq., 162, 78 (2011)
  35. Gai JG, Gong XL, Kang WL, Zhang X, Wang WW, Desalination, 333(1), 52 (2014)
  36. Fu FJ, Sun SP, Zhang S, Chung TS, J. Membr. Sci., 469, 488 (2014)