Macromolecular Research, Vol.24, No.4, 314-322, April, 2016
Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance
E-mail:, ,
Design of support layer structures for asymmetric thin film composite membranes has drawn keen attention to improve the power density for salinity gradient power based on pressure-retarded osmosis. This study has interests on electrospun nanofiber-based support layers, and the effects of its open pore sizes are attractively stated. To control the open pore size, a counter charge deposition method was introduced. To retain the open pore size, all the nanofibers were interconnected by a post co-solvent treatment technology. For a thin film composite membrane, an interfacial polymerization was used to fabricate a polyamide active layer on the electrospun nanofiber-based support layers. It was found that although the maximum power density achieved with an open pore size of 2.4 μm2 was 0.14 W/m2, it increased significantly up to 9.5 W/m2 when the pore size was reduced to 0.65 μm2. The cause is the salt flux which increases with increasing the open pore sizes under applied pressures.
- Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103 (2009)
- Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T, Desalination, 224(1-3), 64 (2008)
- Dai A, Treberth KE, J. Hydrometeorol., 3, 660 (2002)
- Mantia FL, Pasta M, Deshazer HD, Logan BE, Cui Y, Nano Lett., 11, 1810 (2011)
- Logan BE, Elimelech M, Nature, 488(7411), 313 (2012)
- She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262 (2012)
- Ingole PG, Choi W, Kim KH, Park CH, Choi WK, Lee HK, Chem. Eng. J., 243, 137 (2014)
- Patel R, Chi WS, Ahn SH, Park CH, Lee HK, Kim JH, Chem. Eng. J., 247, 1 (2014)
- Ingole PG, Kim KH, Park CH, Choi WK, Lee HK, RSC Adv., 4, 51430 (2014)
- Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN, J. Membr. Sci., 288(1-2), 218 (2007)
- Chen SC, Wan CF, Chung TS, J. Membr. Sci., 479, 190 (2015)
- Dlugolecki P, Nymeijer K, Metz S, Wessling M, J. Membr. Sci., 319(1-2), 214 (2008)
- Gao J, Guo W, Feng D, Wang HT, Zhao DY, Jiang L, J. Am. Chem. Soc., 136(35), 12265 (2014)
- Feinberg BJ, Ramon GZ, Hoek EMV, J. Membr. Sci., 476, 311 (2015)
- Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M, Environ. Sci. Technol., 45, 4360 (2011)
- Roh IJ, Kim JJ, Park SY, J. Membr. Sci., 197(1-2), 199 (2002)
- Song X, Liu Z, Sun DD, Energy Environ. Sci., 6, 1199 (2013)
- Wang M, Jin HJ, Kaplan DL, Rutledge GC, Macromolecules, 37(18), 6856 (2004)
- Huang LW, Manickam SS, McCutcheon JR, J. Membr. Sci., 436, 213 (2013)
- Bui NN, Lind ML, Hoek EMV, McCutcheon JR, J. Membr. Sci., 385-386, 10 (2011)
- Bui NN, McCutcheon JR, Environ. Sci. Technol., 47, 1761 (2012)
- Huang LW, Arena JT, Manickam SS, Jiang XQ, Willis BG, McCutcheon JR, J. Membr. Sci., 460, 241 (2014)
- She QH, Hou DX, Liu JX, Tan KH, Tang CYY, J. Membr. Sci., 445, 170 (2013)
- Catalani LH, Collins G, Jaffe M, Macromolecules, 40(5), 1693 (2007)
- Park CH, Kim KH, Lee JC, Lee J, Polym. Bull., 61(4), 521 (2008)
- Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S, Desalination, 279(1-3), 201 (2011)
- Yoon K, Hsiao BS, Chu B, Polymer, 50(13), 2893 (2009)
- Park CH, Kim JH, Ree M, Sohn BH, Jung JC, Zin WC, Polymer, 45(13), 4507 (2004)
- Hong S, Schaber CF, Dening K, Appel E, Gorb SN, Lee H, Adv. Mater., 26(45), 7581 (2014)
- Park CH, Lee J, Macromol. Mater. Eng., 295, 544 (2010)
- Miller-Chou BA, Koenig JL, Prog. Polym. Sci, 28, 1223 (2003)
- Lee KL, Baker RW, Lonsdale HK, J. Membr. Sci., 8, 141 (1981)
- Chou SR, Shi L, Wang R, Tang CYY, Qiu CQ, Fane AG, Desalination, 261(3), 365 (2010)
- Bouazizi S, Nasr S, J. Mol. Liq., 162, 78 (2011)
- Gai JG, Gong XL, Kang WL, Zhang X, Wang WW, Desalination, 333(1), 52 (2014)
- Fu FJ, Sun SP, Zhang S, Chung TS, J. Membr. Sci., 469, 488 (2014)