Particulate Science and Technology, Vol.34, No.2, 217-222, 2016
Electrical properties optimization of silver nanowires supported on polyethylene terephthalate
The aim of this study is the enhancement of the electrical properties of thin films obtained from silver nanowires (AgNWs) deposited on a flexible polyethylene terephthalate (PET) support. First, AgNWs were obtained by the "polyol" liquid phase synthesis method in the presence of chloride ions. After purification, the AgNWs were successively deposited on a flexible support of PET by doctor blade method. To improve the adhesion of the AgNWs coating to the substrate, thin films of polymethyl methacrylate (PMMA) were interposed between the layer of AgNWs and PET substrate. The properties of the thin films have been studied depending on the number of AgNWs layers and heat treatment procedure. Characterization of pure AgNWs as well as of AgNWs/PMMA/PET structures has been carried out by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy, UV-Vis spectroscopy, and scanning probe microscopy. The sheet resistance of the transparent conducting films was determined by four point probe measurement. Best results in terms of homogenous conductance across the film and optical transmittance have been obtained for samples prepared by deposition of four successive layers of AgNWs. Further heat treatment improved the conductivity of AgNWs on the PMMA/PET substrate. For these films, the sheet resistance decreased from 41.25 to 29.55 omega/sq after 40min of heat treatment in air at 150 degrees C.