화학공학소재연구정보센터
Journal of Electroanalytical Chemistry, Vol.638, No.1, 33-38, 2010
Cetyltrimethyl ammonium bromide effect on highly electrocatalysis of methanol oxidation based on nickel particles electrodeposited into poly (m-toluidine) film on the carbon paste electrode
In this work, m-toluidine is electropolymerized at the surface of carbon paste electrode using consecutive cyclic voltammetry in 20 mM monomer aqueous solution in the presence of 6 mM cetyltrimethyl ammonium bromide (CTAB) as surfactant. Then transition metal of nickel is incorporated into the polymer by electrodepositing of Ni (II) from 1.5 M NiSO(4) acidic solution using chronoamperometry technique (-1.0 V versus Ag vertical bar AgCl vertical bar KCl (3 M) for 15 min). In alkaline medium (i.e. NaOH 0.1 M) a good redox behavior of Ni (III)/Ni (II) couple at the surface of Ni/poly (m-toluidine) modified carbon paste electrode (Ni/PMT/MCPE) in the absence and presence of CTAB (Ni/CTAB-PMT/MCPE) can be observed. Electrocatalytic oxidation of methanol has been studied on Ni/PMT/MCPE and Ni/CTAB-PMT/MCPE. The results show that CTAB significantly enhances the catalytic efficiency of nickel particles on the oxidation of methanol in aqueous alkaline media. Moreover, the effects of various parameters such as concentration of CTAB, concentration of methanol, electrodepositing time, film thickness and monomer concentration on the electrooxidation of methanol as well as long-term stability of the Ni/CTAB-PMT/MCPE have also been investigated. This polymeric modified electrode can oxidize the methanol with high current density (over 40 mA cm(-2)). (c) 2009 Elsevier B.V. All rights reserved.