화학공학소재연구정보센터
Journal of Electroanalytical Chemistry, Vol.639, No.1-2, 102-108, 2010
Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline
Molecular oxygen (O-2) reduction by decamethylferrocene (DMFc) was investigated at a polarized water/1,2-dichloroethane (DCE) interface. Electrochemical results point to a mechanism similar to the EC type reaction at the conventional electrode/solution interface, in which an assisted proton transfer (APT) by DMFc across the water/DCE interface via the formation of DMFcH(+) corresponds to the electrochemical step and O-2 reduction to hydrogen peroxide (H2O2) represents the chemical step. The proton transfer step can also be driven using lipophilic bases such as 4-dodecylaniline. Finally, voltammetric data shows that lipophilic DMFc can also be extracted to the aqueous acidic phase to react homogeneously with oxygen. (C) 2009 Elsevier B.V. All rights reserved.