화학공학소재연구정보센터
Journal of Electroanalytical Chemistry, Vol.757, 1-7, 2015
Trivalent Ti self-doped Li4Ti5O12: A high performance anode material for lithium-ion capacitors
To enhance kinetics of lithium insertion/extraction of anode materials for hybrid lithium-ion capacitors (hybrid LICs), we develop a new applicable strategy toward the synthesis of trivalent Ti self-doped Li4Ti5O12 nanopartides. Starting with Ti2O3, we show that subsequent solid state reaction with Li2CO3 leads to the formation of trivalent Ti self-doped Li4Ti5O12. The presence of trivalent Ti gives rise to high electric conductivity and the nanostructure reduces the transport path lengths of lithium-ions and electrons, permitting fast kinetics for both transported lithium-ions and electrons, thus enabling high-power performance. A high performance hybrid LIC is fabricated by using Ti3+ self-doped Li4Ti5O12 as an insertion-type anode and activated carbon derived from outer peanut shell as cathode, which delivers high energy density (67 Wh kg(-1)), high power density (8000 W kg(-1)). Additionally, the device still retains about 79% of its original capacity even after 5000 cycles at 0.5 A g(-1). (C) 2015 Elsevier B.V. All rights reserved.