Journal of Chemical Thermodynamics, Vol.91, 43-61, 2015
Spherical resonator for vapor-phase speed of sound and measurements of 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane (RE347mcc) and trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]
We describe an apparatus to measure the speed of sound of gas samples at temperatures from (265 to 500) K with pressures up to 10 MPa. The speed of sound was determined from the frequency of the three lowest-order radial resonance modes for the gas in a spherical cavity machined from type 321 stainless steel for corrosion resistance. The spherical resonator was contained in an isothermal copper block that was maintained at the temperature of interest by a multilayer thermostat with vacuum insulation. The dimensions of the spherical cavity were characterized as a function of temperature and pressure though calibration measurements with high-purity argon. The performance of the apparatus was demonstrated with measurements of high-purity methane and ethane. Measurements of the sound speed of 1,1,1,2,2, 3,3-heptafluoro-3-methoxypropane (RE347mcc) are reported at temperatures from (325 to 500) K with pressures up to 1.6 MPa. Measurements on trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) are reported at temperatures from (280 to 420) K with pressures up to 2.8 MPa. The average relative combined expanded uncertainties of the measured sound speed for RE347mcc and R1234ze(E) are (0.029 and 0.041)%, respectively. Published by Elsevier Ltd.
Keywords:Ethane;1,1,1,2,2,3,3-Heptafluoro-3-methoxypropane;Methane;Sound speed;Spherical resonator;trans-1,3,3,3-Tetrafluoropropene