화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.5, 572-577, October, 2000
탄화수소에 의한 NO의 선택적 촉매 환원 반응에 대한 SnO2의 촉매 반응 연구
Selective Catalytic Reduction of NO with Hydrocarbons over SnO2
E-mail:
초록
탄화수소가 공존하는 과잉 산소 분위기에서 SnO2에 의하여 NOx가 환원되는 반응 메커니즘과 환원 활성에 대하여 연구하였다. 승온탈착 실험에서 환원 처리된 SnO2 표면에 흡착된 NO는 150℃에서 NO로 탈착하고, 산화 처리된 경우에는 200, 300 및 390℃에서 NO2로 탈착하는 것이 관찰되었다. 그러나 탄화수소(에틸렌, 프로필렌 및 프로판)를 이용한 선택적 촉매 환원 반응에서는 NOx 환원 활성 온도 영역에서 오히려 NO2의 배출이 억제되었다. 같은 실험조건에서 NOx 환원 활성의 상대적 세기는 "에틸렌>프로필렌>>프로판"의 순으로 나타났으며, 본 실험 범위 내에서 반응 기체 중의 산소 농도 증가는 탄화수소 종류에 상관없이 NOx 환원 활성을 감소시키는 것으로 나타났다. 또한 NOx의 환원은 탄화수소의 연소와 함께 시작되는 것을 관찰할 수 있었다. 이러한 결과로부터, SnO2에 의한 NOx 환원은 SnO2 표면에 생성된 NO2와 탄화수소 활성체에 의하여 이루어지는 것으로 해석하였다.
The mechanism and activity of SnO2 for the selective catalytic reduction of NOx at the atmosphere of hydrocarbons and an excess of oxygen has been studied. Temperature-programmed desorption showed that only NO was desorbed from the surface of reduced-SnO2 at 150℃ and NO2 was desorbed from the surface of oxidized-SnO2 at 200, 300, and 390℃, respectively. For the selective catalytic reduction of NOx by hydrocarbons(ethylene, propylene, and propane), however, the formation of NO2 was depressed in the NOx reduction temperature region. The relative intensities of NOx reduction appeared to be the order of "ethylene>propylene>>propane" under the same experimental conditions. NOx reduction activities had a tendency to decrease with increasing oxygen concentrations in the reaction gas compositions irrespective of hydrocarbon species our experimental conditions. It was observed that the NOx reduction starts with the hydrocarbon combustion. From the results, it was proposed that NOx was reduced by activated intermediate of hydrocarbons and NO2 formed on SnO2.
  1. Iwamoto M, Yahiro H, Yu-u Y, Shundo S, Mizuni N, Shokubai, 32, 430 (1990)
  2. Held W, Konig A, Richter T, Puppe L, SAE Paper, 900496 (1990)
  3. Petunchi JO, Hall WK, Appl. Catal. B: Environ., 2, L17 (1993) 
  4. Inui T, Iwamoto M, Shimizu S, Proc. of 9th Congress on Catalysis, Budapest, B.8 (1992)
  5. Hamada H, Kintaichi Y, Sasaki M, Ito T, Appl. Catal., 64, L1 (1990) 
  6. Kikuchi E, Yogo K, Tanaka S, Abe M, Chem. Lett., 1063 (1991) 
  7. Hamada H, Kintaichi Y, Sasaki M, Ito T, Tabata M, Appl. Catal., 70, L15 (1991) 
  8. Hosose H, Yahiro H, Mizuno N, Iwamoto M, Chem. Lett., 1859 (1991) 
  9. Hamada H, Kintaichi Y, Tabata M, Sasaki M, Ito T, Chem. Lett., 2179 (1991) 
  10. Cox DF, Fryberger TB, Semancik S, Phys. Rev., B, Condens. Matter, 38, 2072 (1988)
  11. deFresart E, Draville J, Gilles JM, Appl. Surf. Sci., 11-12, 637 (1982) 
  12. Erickson JW, Semancik S, Surf. Sci., 187, L658 (1987) 
  13. Cox DF, Fryberger TB, Semancik S, J. Vac. Sci. Technol. A, 6, 828 (1988) 
  14. Cavicchi R, Tarlov M, Semancik S, J. Vac. Sci. Technol. A, 8, 2347 (1990) 
  15. Niwa M, Manami T, Kodama H, Hattori T, Murakami Y, J. Catal., 53, 198 (1978) 
  16. Takami J, Akiyama M, Xu C, Miura N, Yamazoe N, Shokubai, 31, 393 (1989)
  17. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T, Surf. Sci., 86, 335 (1979) 
  18. Teraoka Y, Harada T, Iwasaki T, Ikeda T, Kagawa S, Chem. Lett., 773 (1993) 
  19. Yokoyama C, Misono M, J. Catal., 150(1), 9 (1994) 
  20. SPECRTA Instruments Inc., Technical Data, RGA Application Bulletin # 208