화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.5, 615-619, October, 2000
역미셀내 비이온성 고분자의 가용성에 의한 퍼콜레이션 현상의 변화
Changes of Percolation Phenomenon by Solubilization of Non-ionic Polymer into Reverse Micells
E-mail:
초록
역미셀의 특성들에 대하여 퍼콜레이션 현상을 통해 조사 검토하였다. 주입법에 의한 역미셀내 비이온성 고분자의 가용화와 퍼콜레이션 현상에 미치는 그 영향은 역미셀 용액의 전기 전도도 측정법으로 정량적으로 쉽게 평가할 수 있었다. 퍼콜레이션 현상은 다양한 고분자가 가용화된 역미셀의 계면 특성에 대한 편리한 평가 기준임을 알았다. 이 퍼콜레이션 현상은 고분자-미셀 그리고 미셀-미셀간 상호작용을 명확하게 반영해 준다. 퍼콜레이션 현상은 가용화된 고분자의 특성, 농도 및 분자량 등에 의하여 변화한다. 또한, 이 현상은 알칸 용매의 사슬 길이가 짧을수록, 용액의 온도가 감소할수록 억제되었다. 그러므로, 이 퍼콜레이션 현상은 고분자 또는 단백질의 가용화가 역미셀계의 상호작용에 미치는 영향을 효과적으로 예측하고 평가할 수 있는 편리한 척도임을 알았다.
Reverse micellar properties have been studied by using a percolation phenomenon. Solubilization of non-ionic polymer into reverse micelles by the injection method and its effect on the percolation phenomenon could be easily evaluated by the measurement of electrical conductivity. The percolation phenomenon is found to be a convenient measure of interfacial properties of reverse micelle solubilizing various polymers, which clearly reflects the polymer-micellar and micellar-micellar interactions, and so the percolation phenomenon should also be useful for predicting various interacting effects of solubilized polymers or proteins. The percolation phenomenon were dependent on the kinds, concentration and molecular weight of solubilized polymers. It is also suppressed with decreasing in chain length of alkane solvent and the temperature of solution. Accordingly, the percolation phenomenon should be a convenient measure to predict and estimate interaction effects in reverse micellar systems of solubilized polymers or proteins.
  1. Goklen K, Hatton TA, Sep. Sci. Technol., 22, 831 (1987)
  2. Luisi PL, Giomini M, Pileni MP, Robinson BH, Biochim. Biophys. Acta, 947, 209 (1988)
  3. Hatton TA, "Surfactant-Based Separation Processes," Scamehorn, J.F. and Harwell, J.H. ed., Marcel Dekker, New York, 55 (1989)
  4. Dekker M, VantRiet K, Bijsterbosch BH, Wolbert RBG, Hilhorst R, Chem. Eng. Sci., 29, 49 (1990)
  5. Dekker M, Riet KV, VanDerPol JJ, Chem. Eng. J., 46, B69 (1991) 
  6. Kuboi R, Hashimoto K, Komasawa I, Kag. Kog. Ronbunshu, 15, 335 (1990)
  7. Kuboi R, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 16, 763 (1990)
  8. Kuboi R, Yamada Y, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 17, 607 (1991)
  9. Martinek K, Klyachko NL, Kabanov AV, Yu KL, Levashov AV, Biochim. Biophys. Acta, 981, 161 (1989) 
  10. Larpent C, Patin H, J. Mol. Catal., 72, 315 (1992) 
  11. Kuboi R, Yamada Y, Komasawa I, Kag. Kog. Ronbunshu, 18, 72 (1992)
  12. Hirai T, Imamura E, Matsumoto T, Kuboi R, Komasawa I, Kag. Kog. Ronbunshu, 18, 296 (1992)
  13. Shiojiri S, Hirai T, Komasawa I, J. Chem. Eng. Jpn., 30(1), 137 (1997) 
  14. Kelly B, Wang DC, Hatton TA, Biotechnol. Bioeng., 42, 1199 (1993) 
  15. Jada A, Lang J. Zana R, J. Phys. Chem., 93, 10 (1989) 
  16. Jada A, Lang J. Zana R, J. Phys. Chem., 94, 387 (1990) 
  17. Alexandridis P, Holzwarth JF, Hatton TA, J. Phys. Chem., 99(20), 8222 (1995) 
  18. Kuboi R, Hong DP, Komasawa I, Shiomori K, Kawano Y, Lee SS, Solv. Extr. Res. Dev. Jpn., 3, 223 (1996)
  19. Huruguen JP, Authier M, Greffe JL, Pileni MP, Langmuir, 7, 243 (1991) 
  20. Holovko M, Badia JP, Chem. Phys. Lett., 204, 511 (1993) 
  21. Suarez MJ, Levy H, Lang J, J. Phys. Chem., 97, 9808 (1993) 
  22. Hong DP, Kuboi R, Komasawa I, Korean J. Chem. Eng., 14(5), 334 (1997)
  23. Hong DP, Kuboi R, Biochem. Eng. J., 23 (1999)
  24. Larsson KM, Pileni MP, Eur. Biophys. J., 21, 409 (1993)
  25. Lang J, Jada A, J. Phys. Chem., 92, 1946 (1988) 
  26. Cassin G, Illy S, Pileni MP, Chem. Phys. Lett., 221, 205 (1994)