International Journal of Hydrogen Energy, Vol.41, No.12, 5504-5512, 2016
Polypeptide and Mn-Ca oxide: Toward a biomimetic catalyst for water-splitting systems
Water oxidation is the bottleneck for hydrogen production by water-splitting systems using sunlight or other sustainable energies. Herein we report nano-sized Mn-Ca oxide in an engineered polypeptide (Glu-Glu-Glu-Glu-Glu-Glu-Glu-His-Val-Val-Val-Val-Val-Val-Val-Val) as a structural model for biological water-oxidizing site in plants, algae, and cyanobacteria. The compound was synthesized by a simple procedure and characterized by transmission electron microscopy, atomic absorption spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction spectrometry, UV-Visible spectroscopy, dynamic light scattering, and some electrochemical methods. Using hydrogen to store sustainable energies is a promising strategy in near future and such nano-sized Mn-Ca oxide/polypeptide is a promising strategy in water-splitting systems to provide cheap electrons from water toward hydrogen production. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.