화학공학소재연구정보센터
Energy Conversion and Management, Vol.114, 154-167, 2016
A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid
A control system, design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional-integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup. (C) 2016 Elsevier Ltd. All rights reserved.