화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 365-370, May, 2016
알루미늄 합금 위에 전착된 폴리피롤/폴리스티렌설포네이트 필름들의 형상변화와 표면전기전도도 조절을 위한 PSS와 산성화 이온 농도의 영향
Effect of PSS and Acidified Ion Concentrations for Morphological and Electrical Control of Ppy-PSS Films Electrodeposited on Al Alloy
E-mail:
초록
피롤 단량체는 균일하고 접착력 있는 폴리피롤 고분자로 알루미늄 합금 전극 위에 성공적으로 전착되었다. 다양한 농도의 질산으로 산성화된 전해질 용액 안에서 전하보상 상대이온이면서 메트릭스의 역할을 하는 폴리스티렌설포네이트 고분자를 첨가하면 첨가량에 따라 폴리피롤 고분자의 표면 모폴로지와 전기적 특성이 변화됨을 보고한다. 일정한 전하 밀도(1 mAcm-2)에서 수행된 전압-시간 중합 곡선은 폴리피롤이 초기 핵 생성 단계에서 2차원적인 성장으로 전이하는 전압 거동을 나타내었다. SEM-EDS 분석을 이용한 이 필름들의 특성은 전압-시간 곡선에서 예상되었던 것과 같이 폴리피롤의 성장 메커니즘과 일치함을 보였다. 더 나아가, C-AFM 관찰을 통해 Al alloy 위에 형성된 폴리피롤 고분자막의 전류 이미지와 모폴로지가 질산 산성화 농도와 피롤을 포함한 PSS의 첨가 농도에 의존하여 변화됨을 서술할 것이다.
Homogeneous and adherent polypyrrole (Ppy) coatings were successfully obtained on Al alloy electrodes in various nitric acidified solutions with pyrrole (Py) monomers. Surface morphological and electrical properties of Ppy coating were controlled by the amount of additional anion polystyrenesulfonate (PSS), which played roles of matrix and charge compensating counterion. The potential-time curves were characterized by transition potential behavior from the initial nucleation step to the two-dimensional lateral growth step under constant potential and all the electrochemical processes were conducted under a constant charge density of 1 mAcm-2. The characterization of these films by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) was consistent with the growth mechanism of Ppy as expected from the potential-time curve. Further, though C-AFM analysis, the morphological and current images of Ppy-PSS films on Al alloy were influenced according to various experimental parameters such as different acidified nitric acid and PSS concentrations containing Py.
  1. Tallman DE, Vang C, Wallace GG, Bierwagen GP, J. Electrochem. Soc., 149(3), C173 (2002)
  2. Tallman DE, Vang CK, Dewald MP, Wallace GG, Bierwagen GP, Synth. Met., 135, 33 (2003)
  3. Tallman DE, Dewald MP, Vang CK, Wallace GG, Bierwagen GP, Curr. Appl. Phys., 4(2-4), 137 (2004)
  4. Levine KL, Tallman DE, Bierwagen GP, Aust. J. Chem., 58, 294 (2005)
  5. Sun L, Liu H, Clark R, Yang SC, Synth. Met., 84, 67 (1997)
  6. Racicot R, Brown R, Yang SC, Synth. Met., 85, 1263 (1997)
  7. Racicot R, Clark RL, Liu HB, Yang SC, Alias MN, Brown R, Proceed. SPIE, 2528, 251 (1995)
  8. Le HNT, Garcia B, Deslouis C, Le Xuan Q, J. Appl. Electrochem., 32(1), 105 (2002)
  9. Hien NTL, Garcia B, Pailleret A, Deslouis C, Electrochim. Acta, 50(7-8), 1747 (2005)
  10. Naoi K, Takeda M, Kanno H, Sakakura M, Shimada A, Electrochim. Acta, 45(20), 3413 (2000)
  11. Hulser P, Beck F, J. Appl. Electrochem., 20, 596 (1990)
  12. Martins JI, Costa SC, Bazzaoui M, Goncalves G, Fortunato E, Martins R, Electrochim. Acta, 51(26), 5802 (2006)
  13. Han DH, Lee HJ, Park SM, Electrochim. Acta, 50(15), 3085 (2005)
  14. Bay L, Mogensen N, Skaarup S, Sommer-Larsen P, Jorgensen M, West K, Macromolecules, 35, 9345 (2000)