화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 439-445, May, 2016
불소를 함유한 UV 경화 폴리우레탄 아크릴레이트 합성 및 물성
Synthesis and Properties of UV-Curable Polyurethane Acrylates Containing Fluorine
E-mail:
초록
휘발성 유기화합물을 포함하지 않는 친환경 발수성 코팅제를 제조하기 위해 perfluoropolyether(PFPE)를 함유하는 UV 경화형 폴리우레탄 아크릴레이트를 합성하였다. 폴리올은 폴리카보네이트다이올과 PFPE 혼합하여 사용하였으며 디이소시아네이트는 내수성과 황변성이 우수한 H12MDI를 사용하였다. C=C결합을 가지는 2-hydroxyethyl acrylate를 부가하여 UV경화 폴리우레탄 아크릴레이트 코팅제를 제조하였다. PFPE의 함량에 따라서 기계적 특성, 열적 특성, 표면 특성 등을 고찰하였으며, 유연한 PFPE 함량이 증가할수록 기계적 강도는 감소하는 반면 신율은 증가하였다. 접촉각 측정을 통하여 PFPE 함량을 10%까지 올리면 코팅제의 접촉각이 75.9°에서 107.1°로 증가하였고 발수특성이 향상된 것을 확인하였다.
In order to develop eco-friendly water-repellent coating materials, UV-curable polyurethane acrylates containing hydrophobic fluorine group were synthesized. H12MDI with excellent yellowing resistance and water resistance was used as an isocyanate. Mixed polyols of polycarbonate diol and perfluoropolyether (PFPE) diol were used. 2-Hydroxyethyl acrylate with C=C bond was introduced for UV-curing coatings. Thermal and mechanical properties of the obtained UV-cured polyurethane acrylates were investigated. As increasing to PFPE content in polyol 10%, the contact angle of polyurethane acrylates increased from 75.9o to 107.1o, tensile strength decreased but elongation increased due to the flexibility of PFPE. These results indicate that the surface hydrophobicity can be achieved by the introduction of PFPE in polyurethane acrylates.
  1. Bluestein C, Polym. -Plast. Technol. Eng., 17, 83 (1981)
  2. Lee JH, Hong SD, Kim YH, Polym. Korea, 37, 2 (2013)
  3. Zisman WA, Ind. Eng. Chem., 55, 19 (1963)
  4. Baier RE, Meyer PE, Chemtech., 16, 178 (1986)
  5. Nostro PL, Adv. Colloid Interface Sci., 56, 245 (1995)
  6. Yamauchi G, Takai K, Sasito H, IEICE Trans. Electron., E83-C, 1139 (2000)
  7. Park JM, Lee YH, Park H, Kim HD, J. Appl. Polym. Sci., 131, 40603 (2014)
  8. Yuan YM, Shoichet MS, Macromolecules, 33(13), 4926 (2000)
  9. Ming WH, Laven J, van der Linde R, Macromolecules, 33(18), 6886 (2000)
  10. Jannasch P, Macromolecules, 14, 3045 (1998)
  11. Baek CH, Kong JY, Hyun SH, Lim YJ, Kim WS, Polym. Korea, 29(5), 433 (2005)
  12. Shin JS, Lee JH, Kwak EM, Yun JK, Kim HB, Polym. Korea, 36, 5 (2012)
  13. Zhang JY, Windall G, Boyd IW, Appl. Surf. Sci., 186(1-4), 568 (2002)
  14. Decker C, Viet TNT, Decker D, Weber-Koehl E, Polymer, 42(13), 5531 (2001)
  15. Kim JY, Moon BJ, Kang DW, Hwang SH, Polym. Korea, 34, 6 (2010)
  16. Cho CH, Seo HD, Min BH, Cho HK, Noh ST, Choi HG, Cho YH, Kim JH, J. Korean Ind. Eng. Chem., 13(8), 825 (2002)
  17. Kim HJ, Polym. Korea, 25(1), 33 (2001)
  18. Lee WK, Losito I, Gardella JA, Hicks WL, Macromolecules, 34(9), 3000 (2001)
  19. Son SH, Kim IH, Lee HJ, Kim JH, Polym. Korea, 21(3), 375 (1997)
  20. Shin EY, Kim HJ, Polym. Korea, 35, 2 (2011)
  21. Hwang HD, Kim HJ, J. Colloid Interface Sci., 362(2), 274 (2011)
  22. Jo NJ, Chun JH, Lim KT, Jang ES, Lee WK, Macromol. Res., 21(7), 821 (2013)
  23. Bongiovanni R, Malucelli G, Sangermano M, Priola A, J. Fluor, 125, 345 (2004)
  24. Ahn YU, Lee SK, Jeong HM, Kim BK, Prog. Org. Coat., 60, 17 (2007)
  25. Lee KW, Ko JH, Shim JY, Kim YH, Polym. Korea, 33, 2 (2009)
  26. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I, Polym. Eng. Sci., 48(2), 297 (2008)