화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 446-451, May, 2016
응고 방법에 따른 천연고무의 동적특성
Characterization of the Dynamic Properties of Natural Rubbers Coagulated Using Different Methods
E-mail:
초록
천연고무 라텍스를 아세트산을 사용한 응고(A-NR), 자연 응고(N-NR) 및 미생물을 사용한 응고(M-NR) 등 다른 방법들로 응고하였고, 이들의 가교도, 가교특성, 동적특성 및 열축적 특성 등을 조사하였다. 결과에 따르면 MNR의 경우 가장 높은 가교도와 가장 빠른 경화속도를 나타냈으며, A-NR은 정 반대인 가장 낮은 가교도와 가장 느린 경화속도를 나타내었다. 이들 고무의 동적특성은 rubber process analyzer(RPA), dynamic mechanical analyzer(DMA) 및 압축 열축적 분석방법 등을 이용하여 측정하였다. 동적특성은 고무의 가교도와 매우 밀접한 관계가 있었음을 알 수 있었고, 손실계수는 M-NR이 가장 낮았으며 A-NR의 경우는 가장 높은 값을 나타내었다.
Natural rubber (NR) was coagulated using different methods, i.e., acid coagulation with acetic acid (A-NR), natural coagulation (N-NR), and microorganism coagulation (M-NR). The crosslink density, vulcanization properties, dynamic properties, and heat build-up were investigated. The results showed that M-NR had the highest crosslink density and fastest cure rate, and A-NR had the lowest crosslink density and slowest cure rate. The dynamic properties were measured using a rubber process analyzer, dynamic thermomechanical analysis and compression heat build-up tester; the results showed that the dynamic properties had a close relationship with the crosslink density. The loss factor was lowest for M-NR and highest for A-NR.
  1. Frank WP, Anthony AG, Methods, 27, 77 (2002)
  2. Sansatsadeekul J, Sakdapipanich J, Rojruthai P, J. Biosci. Bioeng., 111(6), 628 (2011)
  3. Ho CC, Subramaniam A, Yong WM, Conf. Kuala Lumpur., 2, 441 (1976)
  4. Southorn WA, Yip E, J. Rubb. Res. Inst. Malaya, 20, 201 (1968)
  5. Xiaodong S, Changfeng Z, Shuangquan L, Jianhe L, Jieping Z, Chin. J. Trop. Agri., 27, 78 (2007)
  6. Ehabe E, Le Roux Y, Ngolemasango F, Bonfils F, Nkeng G, Nkouonkam B, Sainte-Beuve J, Gobina MS, J. Appl. Polym. Sci., 86(3), 703 (2002)
  7. Zhang BL, Liu PM, Deng WY, Lu HX, Ding L, Wang PY, China Rubb. Ind., 59, 553 (2012)
  8. John CK, Sin SW, J. Rubb. Res. Inst. Malaya, 23, 257 (1973)
  9. John CK, J. Rubb. Res. Inst. Malaya, 19, 286 (1966)
  10. Jiankun H, Mingxue W, Huilun L, Tao Z, Chin. J. Trop. Crop., 32, 1388 (2011)
  11. Jieping Z, Chengpeng L, Xiaodong S, Sidong L, Lei Y, China Elastom., 18, 1 (2008)
  12. Zhang BL, Deng WY, Lu HX, Chen M, Qian HL, J. Appl. Polym. Sci., 100(5), 4114 (2006)
  13. Zhao F, Zhao S, Bi W, Kuhn W, Blieskastel, Jian Y, Kaut. Gummi. Kunst., 10, 554 (2007)
  14. Fei Z, Weina B, Ping Z, Jian Y, Kuhn W, China Synth. Rub. Ind., 31, 50 (2008)
  15. Kuhn W, Barth P, Hafner S, Simon G, Schneider H, Macromolecules, 27(20), 5773 (1994)
  16. Kuhn W, Barth P, Dennerb P, Mullera R, Solid State Nucl. Magn. Reson., 6, 295 (1996)
  17. Grinberg F, Heidenreich M, Kuhn W, J. Magn. Reson., 159, 87 (2002)
  18. Park BH, Jung IG, Park SS, Polym. Korea, 25(1), 63 (2001)
  19. He Y, Natural Rubber Processing, Hainan Press, Haikou, 2007.
  20. Chen Y, Xu C, Polym. Compos., 32, 1593 (2011)
  21. Wang ZH, Lu YL, Liu J, Dang ZM, Zhang LQ, Wang WM, J. Appl. Polym. Sci., 119(2), 1144 (2011)
  22. Wang L, Zhao SH, Li A, Zhang XY, Polymer, 51(9), 2084 (2010)
  23. Joseph S, Appukuttan SP, Kenny JM, Puglia D, Thomas S, Joseph K, J. Appl. Polym. Sci., 117(3), 1298 (2010)
  24. Wang Z, Lu Y, Liu J, Dang ZM, Zhang LQ, Wang W, Polym. Adv. Technol., 22, 2302 (2010)