화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 457-463, May, 2016
순차적인 마이크로 몰딩 방법을 이용한 다중 분획 입자의 제조
Fabrication of Multicompartment Particles via Sequential Micromolding Method
E-mail:
초록
본 연구는 순차적인 마이크로 몰딩 방법을 이용한 고분자 다중 분획 입자 제조 방법에 관한 것이다. 다중 분획 입자는 poly(dimethylsiloxane)(PDMS) 마이크로 몰드 내로 단량체 혼합물의 주입, 휘발성 용매의 증발, 광중합으로 이루어지는 일련의 과정을 통해 제조한다. 이때, 단량체 혼합물에 포함된 휘발성 용매의 농도에 따라, 다중 분획입자를 구성하는 각 구획의 부피분율을 제어하는 것이 가능하다. 또한 단량체 혼합물의 농도 및 다중 분획 입자 제조공정의 반복횟수에 따라, 단일 입자, 이중 입자, 삼중 입자를 선택적으로 제조가 가능함을 보여준다. 제조한 각각의 다중 분획 입자에 형광염료를 함입하여 특정한 정보를 인코딩한 바코드 입자로써의 활용 가능성을 증명한다. 본 연구에서 제안하는 다중 분획 입자를 제조하기 위한 순차적인 마이크로 몰딩 방법은 쉽고, 빠르며, 고가의 장비를 필요로 하지 않는 장점을 가지며, 제조된 다중 분획 입자는 약물 저장 및 전달 소재, 바이오 센서, 그리고 선택적인 흡착-탈착을 유도할 수 있는 고감도 기능성 재료로서 응용이 가능할 것으로 기대한다.
In this paper, we present a fabrication method of polymeric multicompartment particles via a sequential micromolding process composed of injection of photocurable solution, evaporation of volatile solvent, and photo-polymerization. Depending on the concentration of volatile solvent in photocurable solution, the volume fraction of the multicompartment particles can be controlled. Also, the repetition of the sequential micromolding process with controlled composition of photocurable solution provides controlling the number of compartment in the particles. Based on this principle, we can fabricate single particles, Janus particles and triblock particles with desired fraction of the compartment. In addition, the multicompartment particles are able to be applicable for barcode particles embedding fluorescent dyes at each compartment. The barcode particles encode information about their specific compositions and enable simple identification. These sequential micromolding method for multicompartment particles has several advantages including easy, fast, and cost effective process. We envision that the multicompartment particles have various applications such as drug storage, delivery supporters, biosensors, and advanced materials for inducing highly selective adsorption-desorption.
  1. Hashimoto M, Feng J, York RL, Ellerbee AK, Morrison G, Thomas SW, Mahadevan L, Whitesides GM, J. Am. Chem. Soc., 131(34), 12420 (2009)
  2. Hasan MM, Mishra PK, Can. J. Image Processing Computer Vision, 3, 12 (2012)
  3. Wong NY, Xing H, Tan LH, Lu Y, J. Am. Chem. Soc., 135(8), 2931 (2013)
  4. Lee H, Kim J, Kim H, Kim J, Kwon S, Nat. Mater., 9(9), 745 (2010)
  5. Oh J, Jeon I, Ahn S, Kim D, Lee J, Polym. Sci. Technol., 26(2), 155 (2015)
  6. Pregibon DC, Toner M, Doyle PS, Science, 315, 1393 (2007)
  7. Lee J, Bisso PW, Srinivas RL, Kim JJ, Swiston AJ, Doyle PS, Nat. Mater., 13(5), 524 (2014)
  8. Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z, Small, 11, 151 (2015)
  9. Kang SM, Hwang S, Jin SH, Choi CH, Kim J, Park BJ, Lee D, Lee CS, Langmuir, 30(10), 2828 (2014)
  10. Pyo M, Lee J, Baek W, Lee CW, Park BJ, Chem. Commun., 51, 3177 (2015)
  11. Lee J, Pyo M, Lee SH, Kim J, Ra B, Kim WY, Park BJ, Lee CW, Kim JM, Nat. Commun., 5, 3736 (2014)
  12. Thomas SW, Chiechi RC, LaFratta CN, Webb MR, Lee A, Wiley BJ, Zakin MR, Walt DW, Whitesides GM, Proc. Natl. Acad. Sci., 106, 9147 (2009)
  13. Kumar A, Park BJ, Tu F, Lee D, Soft Matter, 9, 6604 (2013)
  14. Crespy D, Staff RH, Becker T, Landfester K, Macromol. Chem. Phys., 213, 1183 (2012)
  15. Guang Y, Lee JK, Polym. Korea, 37(3), 356 (2013)
  16. Park BJ, Choi CH, Kang SM, Tettey KE, Lee CS, Lee D, Langmuir, 29(6), 1841 (2013)
  17. Botto L, Lewandowski EP, Cavallaro M, Stebe KJ, Soft Matter, 8, 9957 (2012)
  18. Kang SM, Kumar A, Choi CH, Tettey KE, Lee CS, Lee D, Park BJ, Langmuir, 30(44), 13199 (2014)
  19. Chen Q, Bae SC, Granick S, Nature, 469(7330), 381 (2011)
  20. Kim J, Oh MS, Choi CH, Kang SM, Kwak MJ, You JB, Im SG, Lee CS, Soft Matter, 11, 4952 (2015)
  21. Chen Q, Diesel E, Whitmer JK, Bae SC, Luijten E, Granick S, J. Am. Chem. Soc., 133(20), 7725 (2011)
  22. Lv W, Lee KJ, Li J, Park TH, Hwang S, Hart AJ, Zhang F, Lahann J, Small, 8, 3116 (2012)
  23. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS, Nat. Mater., 5(5), 365 (2006)
  24. Dendukuri D, Hatton TA, Doyle PS, Langmuir, 23(8), 4669 (2007)
  25. Panda P, Yuet KP, Hatton TA, Doyle PS, Langmuir, 25(10), 5986 (2009)
  26. Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS, Lab on a Chip, 7, 818 (2007)
  27. Choi CH, Jeong JM, Kang SM, Lee CS, Lee J, Adv. Mater., 24(37), 5078 (2012)
  28. Choi CH, Lee J, Yoon K, Tripathi A, Stone HA, Weitz DA, Lee CS, Angew. Chem.-Int. Edit., 122, 7914 (2010)
  29. Choi CH, Lee B, Kim J, Nam JO, Yi H, Lee CS, ACS Appl. Mater. Interf., 7, 11393 (2015)
  30. Choi CH, Kang SM, Jin SH, Yi H, Lee CS, Langmuir, 31(4), 1328 (2015)
  31. Lee B, Choi CH, Kim J, Kang SM, Nam JO, Jin SH, Lee CS, Polym. Korea, 39(5), 814 (2015)
  32. Choi CH, Kim J, Kang SM, Lee J, Lee CS, Langmuir, 29(27), 8447 (2013)
  33. Eom N, Kim J, Kang SM, Lee CS, Clean Technol., 20(3), 226 (2014)
  34. Jeong JM, Son JW, Choi CH, Lee CS, Clean Technol., 18(3), 295 (2012)
  35. Kang SM, Choi CH, Kim J, Lee CS, Clean Technol., 18(4), 331 (2012)
  36. Love JC, Wolfe DB, Jacobs HO, Whitesides GM, Langmuir, 17(19), 6005 (2001)
  37. Xia Y, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM, Science, 276, 347 (1996)
  38. Park KS, Lee KS, Sung MM, Polym. Sci. Technol., 23(6), 629 (2012)
  39. Park JH, Cho YG, Do HS, Lim DH, Kim HJ, Korean Ind. Chem. News, 10(4), 35 (2007)
  40. Cokbaglan L, Arsu N, Yagci Y, Jockusch S, Turro NJ, Macromolecules, 36(8), 2649 (2003)
  41. Fouassier J, Allonas X, Burget D, Prog. Org. Coat., 47, 16 (2003)
  42. Moon SI, Park IJ, Jin BS, Jin CS, Kim WS, Polym. Korea, 22(3), 391 (1998)
  43. Choe Y, Park S, Kim W, Park D, Korean J. Chem. Eng., 22(5), 750 (2005)
  44. Islam MT, Haldorai Y, Nguyen VH, Islam MN, Ra CS, Shim JJ, Korean J. Chem. Eng., 31(6), 1088 (2014)
  45. Lee SY, Yang S, Chem. Commun., 51, 1639 (2015)