Polymer(Korea), Vol.40, No.3, 489-497, May, 2016
PVdF/GO 나노섬유 복합 분리막의 제조 및 중금속 제거 특성
Preparation of PVdF/GO Nanofiber Composite Membranes and its Heavy Metal Removal Characteristics
E-mail:
초록
본 연구에서는 전기방사법을 이용하여 PVdF/GO 나노섬유 복합분리막을 제조하고, 중금속(납, 카드뮴)이온에 대한 제거특성평가를 진행하였다. 합성된 GO 및 복합분리막은 SEM, FTIR, Raman 분석 및 tensometer를 이용하여 특성평가를 진행하였으며, 위 결과로부터 다양한 기능기를 가진 GO의 합성 및 PVdF 나노섬유 내에 복합화되어 있는 것을 확인하였다. 또한 합성된 GO의 Langmuir 및 Freundlich 흡착 등온선 연구를 실시하였다. PVdF/GO 나노섬유 복합분리막은 친수특성을 보여주고 있으며, PVdF 나노섬유 분리막 대비 최대 3배 이상의 높은 수투과도를 나타내었다. PVdF/GO20의 중금속 제거율은 시간에 따라 점차 증가하였으며, 2시간 이후 95.2% (Pb), 98.3% (Cd)에 각각 도달하는 것을 확인하였다. 위 결과로부터 제조된 PVdF/GO 나노섬유 복합분리막은 하폐수처리 시스템에 충분히 활용할 수 있을 것으로 판단된다.
This paper describes the preparation of PVdF/graphene oxide (GO) nanofiber composite membranes via electrospining and their removal characteristics of heavy metal ions (e.g., lead and cadmium). The synthesized GO and composite membranes were characterized by SEM, FTIR, Raman analysis, and tensometry. These results demonstrated the successful synthesis of GO with various functional groups and their incorporation into the PVdF nanofibers. In addition, the adsorption isotherm studies of the synthesized GO using both the Langmuir and Freundlich models were carried out. The PVdF/GO nanofiber composite membranes showed hydrophilic characteristics and higher pure water flux (up to 3 times) than that of a neat PVdF nanofiber membranes. The heavy removal rate of PVdF/GO20 increased gradually as a function of time which reached at 95.2% (Pb) and 98.3% (Cd) after 2 h, respectively. From these results, prepared PVdF/GO nanofiber composite membranes have shown a great potential to be utilized for the wastewater system.
- Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
- Mier MV, Callejas RL, Gehr R, Cisneros BEJ, Alvarez PJJ, Water Res., 35, 373 (2001)
- Zhao G, Li J, Ren X, Chen C, Wang X, Environ. Sci. Technol., 45, 10454 (2011)
- Huang J, Wu Z, Chen L, Sun Y, Mol J, J. Mol. Liq., 209, 753 (2015)
- Matlock MM, Howerton BS, Atwood DA, Ind. Eng. Chem. Res., 41(6), 1579 (2002)
- Matlock MM, Howerton BS, Atwood DA, Water Res., 36, 4757 (2002)
- Dabrowski A, Hubicki Z, Podkoscielny P, Robens E, Chemosphere, 56, 91 (2004)
- Demirbas A, J. Hazard. Mater., 157(2-3), 220 (2008)
- Gabor B, Endre N, Desalination, 240(1-3), 218 (2009)
- Hua M, Zhang SJ, Pan BC, Zhang WM, Lv L, Zhang QX, J. Hazard. Mater., 211, 317 (2012)
- Yantasee W, Warner CL, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG, Environ. Sci. Technol., 41, 5114 (2007)
- Stafiej A, Pyrzynska K, Sep. Purif. Technol., 58(1), 49 (2007)
- Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S, ACS Appl. Mater. Interfaces, 4, 49 (2012)
- Jabeen H, Kemp KC, Chandra V, J. Environ. Manage., 130, 429 (2013)
- Hu M, Mi B, Environ. Sci. Technol., 47, 3715 (2013)
- Wang S, Sun H, Ang HM, Tade MO, Chem. Eng. J., 208, 336 (2013)
- Goh KL, Setiawan L, Wei L, Si RM, Fane AG, Wang R, Chen Y, J. Membr. Sci., 474, 244 (2015)
- Xia S, Ni M, J. Membr. Sci., 473, 244 (2015)
- Lee J, Chae HR, Won YJ, Lee K, Lee CH, Lee HH, Kim IC, Lee JM, J. Membr. Sci., 448, 223 (2013)
- Jang WG, Yun JH, Jeon KS, Byun HS, RSC Adv., 5, 46711 (2015)
- Huang LW, Manickam SS, McCutcheon JR, J. Membr. Sci., 436, 213 (2013)
- Seok H, Park C, Kim DY, Jo SM, Polym. Korea, 36(5), 606 (2012)
- Kim YJ, Polym. Korea, 35(6), 605 (2011)
- Park OK, Kim JH, Lee S, Lee JH, Chung Y, Kim J, Ku BC, Polym. Korea, 35(5), 472 (2011)
- Jang WG, Jeon KS, Byun HS, Desalin. Water Treat., 51, 5283 (2013)
- Hwang K, Kwon B, Byun H, J. Membr. Sci., 378(1-2), 111 (2011)
- Filippov A, Starov VM, Lloyd DR, Chakravarti S, Glaser S, J. Membr. Sci., 89(3), 199 (1994)
- Wang SR, Tambraparni M, Qiu JJ, Tipton J, Dean D, Macromolecules, 42(14), 5251 (2009)