화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.2, 111-120, May, 2016
Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions
E-mail:
In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity (I3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [Q0(φ)/Q0(0)]/[G*(φ)/G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.
  1. Cheng Y, Wang S, Wang R, Sun J, Gao L, J. Mater. Chem. C, 2, 5309 (2014)
  2. De S, King PJ, Lotya M, O'Neill A, Doherty EM, Hernandez Y, Duesberg GS, Coleman JN, Small, 6, 458 (2010)
  3. Deepak FL, Saldanha P, Vivekchand SRC, Govindaraj A, Chem. Phys. Lett., 417(4-6), 535 (2006)
  4. Einstein A, Annu. Phys.-Berlin, 324, 289 (1905)
  5. Ferry JD, 1980, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York.
  6. Finch CA, 1992, Polyvinyl Alcohol: Developments, 2nd ed., Wiley, Chichester.
  7. Gao HW, He JY, Yang RJ, Yang L, J. Appl. Polym. Sci., 116(5), 2734 (2010)
  8. Gao HW, Yang RJ, He JY, Yang L, J. Appl. Polym. Sci., 116(3), 1459 (2010)
  9. Gelves GA, Lin B, Haber JA, Sundararaj U, J. Polym. Sci. B: Polym. Phys., 46(19), 2064 (2008)
  10. Gelves GA, Lin B, Sundararaj U, Haber JA, Adv. Funct. Mater., 16(18), 2423 (2006)
  11. Gondret P, Petit L, J. Rheol., 41(6), 1261 (1997)
  12. Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL, Chem. Mater., 15, 4332 (2003)
  13. Hyun K, Wilhelm M, Macromolecules, 42(1), 411 (2009)
  14. Hyun K, Lim HT, Ahn KH, Korea-Aust. Rheol. J., 24(2), 113 (2012)
  15. Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ, Korea-Aust. Rheol. J., 15(2), 97 (2003)
  16. Hyun K, Ahn KH, Lee SJ, Sugimoto M, Koyama K, Rheol. Acta, 46(1), 123 (2006)
  17. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
  18. Hyun K, Kim W, Park SJ, Wilhelm M, J. Rheol., 57(1), 1 (2013)
  19. Ishida H, Rimdusit S, Thermochim. Acta, 320(1-2), 177 (1998)
  20. Islam SN, Alam MS, 2011, Characterization of dispersion properties of silicon nanowire considering different core geometry, TENCON 2011-2011 IEEE Region 10 Conference, Bali, Indonesia, 638-641.
  21. Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW, Rheol. Acta, 40(6), 552 (2001)
  22. Kang MH, Yeom HY, Na HY, Lee SJ, Polym. Korea, 37(4), 526 (2013)
  23. Kim H, Hyun K, Kim DJ, Cho KS, Korea-Aust. Rheol. J., 18(2), 91 (2006)
  24. Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959)
  25. Larson RG, 1999, The Structure and Rheology of Complex Fluids, Oxford University press, New York.
  26. Leblanc JL, J. Appl. Polym. Sci., 109(2), 1271 (2008)
  27. Leblanc JL, Nijman G, J. Appl. Polym. Sci., 112(3), 1128 (2009)
  28. Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim TS, Lee D, Ko SH, Adv. Funct. Mater., 23, 4171 (2013)
  29. Lee J, Lee SJ, Ahn KH, Lee SJ, Phys. Rev. E, 92, 012313 (2015)
  30. Lee YK, Nam J, Hyun K, Ahn KH, Lee SJ, Soft Matter, 11, 4061 (2015)
  31. Lim HT, Ahn KH, Hong JS, Hyun K, J. Rheol., 57(3), 767 (2013)
  32. Morrison FA, 2001, Understanding Rheology, Oxford University press, New York.
  33. Nam S, Cho HW, Lim S, Kim D, Kim H, Sung BJ, ACS Nano, 7, 851 (2012)
  34. Nam S, Cho HW, Kim T, Kim D, Sung BJ, Lim S, Kim H, Appl. Phys. Lett., 99, 043104 (2011)
  35. Ohashi M, Kawakami S, Yokogawa Y, Lai GC, J. Am. Ceram. Soc., 88(9), 2615 (2005)
  36. Park HK, Kong BS, Oh ES, Electrochem. Commun., 13, 1051 (2011)
  37. Pashayi K, Fard HR, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T, J. Appl. Phys., 111, 104310 (2012)
  38. Salehiyan R, Hyun K, Korean J. Chem. Eng., 30, 103 (2013)
  39. Salehiyan R, Song HY, Hyun K, Korea-Aust. Rheol. J., 27(2), 95 (2015)
  40. Salehiyan R, Song HY, Choi WJ, Hyun K, Macromolecules, 48(13), 4669 (2015)
  41. Salehiyan R, Yoo Y, Choi WJ, Hyun K, Macromolecules, 47(12), 4066 (2014)
  42. De Sarkar M, Deb P, Adv. Polym. Technol., 27(3), 152 (2008)
  43. Wang S, Cheng Y, Wang R, Sun J, Gao L, ACS Appl. Mater. Interfaces, 6, 6481 (2014)
  44. Wilhelm M, Macromol. Mater. Eng., 287, 83 (2002)
  45. Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37(4), 399 (1998)
  46. Wilhelm M, Reinheimer P, Ortseifer M, Rheol. Acta, 38(4), 349 (1999)
  47. Woo DK, Noh WJ, Lee SJ, Polym. Korea, 34(6), 534 (2010)
  48. Wu HP, Liu JF, Wu XJ, Ge MY, Wang YW, Zhang GQ, Jiang JZ, Int. J. Adhes. Adhes., 26, 617 (2006)
  49. Zhang R, Moon KS, Lin W, Wong CP, J. Mater. Chem., 20, 2018 (2010)
  50. Zhao T, Zhang C, Du Z, Li H, Zou W, RSC Adv., 5, 91516 (2015)