화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.2, 139-148, May, 2016
Flow between eccentric cylinders: a shear-extensional controllable flow
E-mail:
In this work the non-Newtonian fluid between eccentric cylinders is simulated with finite element method. The flow in the annular gap between the eccentric rotating cylinders was found to be a shear-extensional controllable flow. The influence of rotating speed, eccentricity as well as the radius ratio on the extensional flow in the vicinity of the minimum gap between the inner and outer cylinder was quantitatively investigated. It was found that both the strengths of shear flow and extensional flow could be adjusted by changing the rotating speed. In respect to extensional flow, it was also observed that the eccentricity and radius ratio exert significant influences on the ratio of extensional flow. And it should be noted that the ratio of extensional flow in the mix flow could be increased when increasing the eccentricity and the ratio of shear flow in the mix flow could be increased when increasing the radius ratio.
  1. Ballal BY, Rivlin RS, Arch. Ration. Mech. An., 62, 237 (1962)
  2. Ballal BY, Rivlin RS, Rheol. Acta, 14, 484 (1975)
  3. Boonen E, Van Puyvelde P, Moldenaers P, Rheol. Acta, 48(4), 359 (2009)
  4. Boonen E, Van Puyvelde P, Moldenaers P, J. Rheol., 54(6), 1285 (2010)
  5. Bouquey M, Loux C, Muller R, Bouchet G, J. Appl. Polym. Sci., 119(1), 482 (2011)
  6. Cogswell FN, Polym. Eng. Sci., 12, 64 (1972)
  7. Cogswell FN, Trans. Soc. Rheol., 16, 383 (1972)
  8. Domurath J, Saphiannikova M, Ferec J, Ausias G, Heinrich G, J. Non-Newton. Fluid Mech., 221, 95 (2015)
  9. Dris IM, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 56, 349 (1996)
  10. Dris IM, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 80(1), 1 (1998)
  11. Dris I, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 80(1), 59 (1998)
  12. Feigl K, Kaufmann SFM, Fischer P, Windhab EJ, Chem. Eng. Sci., 58(11), 2351 (2003)
  13. Grecov DR, Clermont JR, Int. J. Numer. Methods Fluids, 40, 669 (2002)
  14. Grecov D, Clermont JR, J. Non-Newton. Fluid Mech., 126(2-3), 175 (2005)
  15. Grecov D, Clermont JR, Rheol. Acta, 47(5-6), 609 (2008)
  16. Hosseinalipour SM, Tohidi A, Shokrpour M, Nouri NM, J. Mech. Sci. Technol., 27, 1329 (2013)
  17. Ibarra-Gomez R, Muller R, Bouquey M, Rondin J, Serra CA, Hassouna F, El Mouedden Y, Toniazzo V, Ruch D, Polym. Eng. Sci., 55(1), 214 (2015)
  18. Jia SK, Qu JP, Liu WF, Wu CR, Chen RY, Zhai SF, Huang Z, Polym. Eng. Sci., 54(3), 716 (2014)
  19. Larson RG, Shaqfeh ESG, Muller SJ, J. Fluid Mech., 218, 573 (1990)
  20. Li XK, J. Eng. Math., 87, 1 (2014)
  21. Qu JP, Chen HZ, Liu SR, Tan B, Liu LM, Yin XC, Liu QJ, Guo RB, J. Appl. Polym. Sci., 128(6), 3576 (2013)
  22. Qu JP, Zhang GZ, Chen HZ, Yin XC, He HZ, Polym. Eng. Sci., 52(10), 2147 (2012)
  23. Qu JP, Zhao XQ, Li JB, Cai SQ, J. Appl. Polym. Sci., 127, 3923 (2012)
  24. Rajagopalan D, Byars JA, Armstrong RC, Brown RA, Lee JS, Fuller GG, J. Rheol., 36, 1349 (1992)
  25. Rauwendaal C, Osswald T, Gramann P, Davis B, Int. Polym. Process., 14(1), 28 (1999)
  26. Rondin J, Bouquey M, Muller R, Serra CA, Martin G, Sonntag P, Polym. Eng. Sci., 54(6), 1444 (2014)
  27. Wei X, Collier JR, Petrovan S, J. Appl. Polym. Sci., 104(2), 1184 (2007)
  28. Yanovsky YG, 2009, Polymer Rheology: Theory and Practice, Springer, London.