Journal of Industrial and Engineering Chemistry, Vol.37, 90-94, May, 2016
Enhanced production of unnatural amino acid-containing proteins in a cell-free protein synthesis system
E-mail:
Replacement of canonical amino acids with unnatural amino acids (UAAs) can provide proteins with novel physicochemical properties and biological functions. In this study, as an alternative option to conventional cell-based methods, we used a cell-free protein synthesis system as a flexible platform for facile and efficient production of UAA-containing proteins. We designed a cell-free protein synthesis system derived from the extract of Escherichia coli cells to maximize the selective incorporation of UAAs into the protein structure. First, for the purpose of avoiding competitive incorporation of canonical amino acids and UAAs, the cell extract was extensively washed using a diafiltration process to remove residual amino acids, thereby making the protein synthesis reaction completely dependent upon the exogenous addition of amino acids. In addition, the relatively low affinity of UAAs for cognate aminoacyl-tRNA synthetase was kinetically overcome by increasing the concentration of UAAs to nonphysiological levels. As a result of these modifications of the cell-free synthesis systems, we were able to produce UAAcontaining proteins at comparable yields to those of proteins made of canonical amino acids.
Keywords:Cell-free protein synthesis;Unnatural amino acids;Protein engineering;Residue-specific incorporation
- Alfonta L, Zhang ZW, Uryu S, Loo JA, Schultz PG, J. Am. Chem. Soc., 125(48), 14662 (2003)
- Bose M, Groff D, Xie JM, Brustad E, Schultz PG, J. Am. Chem. Soc., 128(2), 388 (2006)
- Meng H, Kumar K, J. Am. Chem. Soc., 129(50), 15615 (2007)
- Tang, Ghirlanda G, Petka WA, Nakajima T, DeGrado WF, Tirrell DA, Angew. Chem.-Int. Edit., 40, 1494 (2001)
- Tang Y, Tirrell DA, J. Am. Chem. Soc., 123(44), 11089 (2001)
- Johnson JA, Lu YY, Van Deventer JA, Tirrell DA, Curr. Opin. Chem. Biol., 14, 774 (2010)
- Liu CC, Schultz PG, Annu. Rev. Biochem., 79, 413 (2010)
- Liu DR, Schultz PG, Proc. Natl. Acad. Sci. U. S. A., 96, 4780 (1999)
- Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA, J. Biol. Chem., 278, 645 (2003)
- Anfinsen CB, Corley LG, J. Biol. Chem., 244, 5149 (1969)
- Gilles AM, Marliere P, Rose T, Sarfati R, Longin R, Meier A, Fermandjian S, Monnot M, Cohen GN, Barzu O, J. Biol. Chem., 263, 8204 (1988)
- Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M, Harada Y, Nakayama H, Takio K, Hasegawa Y, Endo Y, Hirao I, Yokoyama S, Proc. Natl. Acad. Sci. U. S. A., 99, 9715 (2002)
- Goerke AR, Swartz JR, Biotechnol. Bioeng., 102(2), 400 (2009)
- Hong SH, Kwon YC, Jewett MC, Front. Chem., 2, 34 (2014)
- Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS, Nat. Biotechnol., 24, 79 (2006)
- Kim TW, Keum JW, Oh IS, Choi CY, Kim HC, Kim DM, J. Biotechnol., 130, 389 (2007)
- Bundy BC, Swartz JR, Bioconjugate Chem., 21, 255 (2010)
- Lee KH, Lee KY, Byun JY, Kim BG, Kim DM, Lab Chip, 12, 1605 (2012)
- Ayyadurai N, Prabhu NS, Deepankumar K, Jang YJ, Chitrapriya N, Song E, Lee N, Kim SK, Kim BG, Soundrarajan N, Lee S, Cha HJ, Budisa N, Yun H, Bioconjugate Chem., 22, 551 (2011)
- Kim DM, Kigawa T, Choi CY, Yokoyama S, Eur. J. Biochem., 239, 881 (1996)
- Burdine L, Gillette TG, Lin HJ, Kodadek T, J. Am. Chem. Soc., 126(37), 11442 (2004)
- Ayyadurai N, Prabhu NS, Deepankumar K, Lee SG, Jeong HH, Lee CS, Yun H, Angew. Chem.-Int. Edit., 50, 6534 (2011)
- Rodgers KJ, Shiozawa N, Int. J. Biochem. Cell Biol., 40, 1452 (2008)
- Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD, Nat. Chem. Biol., 5, 593 (2009)
- Calendar R, Berg P, Biochemistry, 5, 1690 (1966)
- Minks C, Alefelder S, Moroder L, Huber R, Budisa N, Tetrahedron, 56, 9431 (2000)