화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 277-287, May, 2016
Significant reduction in stabilization temperature and improved mechanical/electrical properties of pitch-based carbon fibers by electron beam irradiation
E-mail:
Carbon fibers are produced using an electron beam, which can reduce the temperature and time in their stabilization processes compared with the existing processes that use heat treatment. Pitch fibers with a stabilization index (SI) of more than 90% are obtained under a lower heat treatment temperature after an electron beam irradiation of 3000 kGy. It is contributed that electron beam irradiation facilitates dehydrogenation and the introduction of oxygen. Carbon fibers stabilized under the conditions of 3000 kGy and 250 ℃ show 563 MPa and 69 GPa for tensile strength and Young’s modulus, respectively. In addition, the electrical conductivity of carbon fibers is approximately 600 S/cm with SI of more than 84%. Therefore, the electron beam reduces the time and energy required to stabilize the pitch fibers, and electron beam-treated carbon fibers show excellent tensile strength and electrical conductivity.
  1. Jin FL, Park SJ, Carbon Lett., 16, 67 (2015)
  2. Seo MK, Park SJ, Polym. Sci. Technol., 21, 130 (2010)
  3. Yang Q, Liu J, Li S, Wang F, Wu T, Mater. Des., 57, 442 (2014)
  4. Kim BJ, Lee YS, Park SJ, Int. J. Hydrog. Energy, 33(9), 2254 (2008)
  5. Carson EG, Apex S, The future of carbon fibre to 2017: global market forecasts (Ed.), Leatherhead, UK, 2012.
  6. Kim KW, Lee HM, An JH, Kim BS, Min BG, Kang SJ, An KH, Kim BJ, Carbon Lett., 16, 147 (2015)
  7. Chukov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, Bugakov VI, Composites B, 76, 79 (2015)
  8. Mochida I, Toshima H, Korai Y, Matsumoto T, J. Mater. Sci., 23, 670 (1988)
  9. Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH, Carbon, 77, 747 (2014)
  10. Jung DH, Lee YS, Rhee BS, Korean Chem. Eng. Res., 29, 89 (1991)
  11. Arbab S, Zeinolebadi A, Polym. Degrad. Stabil., 98, 2537 (2013)
  12. Lewis IC, Carbon, 18, 191 (1980)
  13. Menendez R, Granda M, Fernandez JJ, Figueiras A, Bermejo J, Bonhomme J, Belzunce J, J. Microsc., 185, 145 (1997)
  14. Vautard F, Ozcan S, Poland L, Nardin M, Meyer H, Compos. Pt. A-Appl. Sci. Manuf., 45, 162 (2013)
  15. Schlemmer B, Bandari R, Rosenkranz L, Buchmeiser MR, J. Chromatogr. A, 1216, 2664 (2009)
  16. Shin HK, Park M, Kang PH, Choi HS, Park SJ, J. Ind. Eng. Chem., 20(5), 3789 (2014)
  17. Park M, Choi Y, Lee SY, Kim HY, Park SJ, J. Ind. Eng. Chem., 20(4), 1875 (2014)
  18. Shin HK, Jeun JP, Kang PH, Fibers Polym., 13, 724 (2012)
  19. Yuan HW, Wang YS, Liu PB, Yu HW, Ge B, Mei YJ, J. Appl. Polym. Sci., 122(1), 90 (2011)
  20. Lee YS, Basova YV, Edie DD, Reid LK, Newcombe SR, Ryu SK, Carbon, 41, 2573 (2003)
  21. Jung JY, Lee YS, Carbon Lett., 15, 129 (2014)
  22. Wirawan R, Sapuan SM, Robiah Y, Khalina A, J. Therm. Anal. Calorim., 103, 1047 (2011)
  23. Vilaplana-Ortego E, Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A, Fuel Process. Technol., 88(3), 265 (2007)
  24. Zhang YZ, Ma HY, Zhang KY, Zhang SJ, Wang J, Electrochim. Acta, 54(8), 2385 (2009)
  25. Seo MK, Choi KE, Min BG, Park SJ, Carbon Lett., 9, 218 (2008)
  26. Jung MJ, Park MS, Lee YS, J. Nanomater., Article ID 240264. (2015)
  27. Li J, Banhart F, Nano Lett., 4, 1143 (2004)
  28. Choi Y, Park M, Shin HK, Liu Y, Choi JW, Nirmala R, Park SJ, Kim HY, Mater. Lett., 123, 59 (2014)
  29. Jiang SZ, Focus on Combustion Research, Nova Science Publishers, New York, 2006.
  30. Mathur RB, Bahl OP, Mittal J, Nagpal KC, Carbon, 29, 1059 (1991)
  31. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PZ, Mater. Lett., 61, 2292 (2007)
  32. Park MS, Ko Y, Jung MJ, Lee YS, Carbon Lett., 16, 121 (2015)
  33. Mora E, Blanco C, Prada V, Santamarıa R, Granda M, Menendez R, Carbon, 40, 2719 (2002)
  34. Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A, Oya A, Sakamoto A, Hosm K, Carbon, 35, 1079 (1997)
  35. Yang J, Nakabayashi K, Miyawaki J, Yoon SH, J. Ind. Eng. Chem., 34, 397 (2016)