화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.6, 1777-1780, June, 2016
Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte
E-mail:,
Nano-Fe2O3 and CoFe2O4 were suspended in molten salt of alkali-metal chloride (LiCl-KCl-CsCl) and their catalytic activity in electrochemical ammonia synthesis was evaluated from potentiostatic electrolysis at 600 K. The presence of nanoparticle suspension in the molten chloride resulted in improved production of NH3, recording NH3 synthesis rate of 1.78×10-10 mol s-1 cm-2 and 3.00×10-10 mol s-1 cm-2 with CoFe2O4 and Fe2O3, which are 102% and 240% higher than that without the use of a nanocatalyst, respectively. We speculated that the nanoparticles triggered both the electrochemical reduction of nitrogen and also chemical reaction between nitrogen and hydrogen that was produced from water electro-reduction on cathode. The use of nanocatalysts in the form of suspension offers an effective way to overcome the sluggish nature of nitrogen reduction in the molten chloride electrolyte.
  1. Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
  2. Licht S, Cui BC, Wang BH, Li FF, Lau J, Liu SZ, Science, 345(6197), 637 (2014)
  3. Anastasopoulou A, Wang Q, Hessel V, Lang J, Processe, 2, 694 (2014)
  4. Sahu JN, Hussain S, Meikap BC, Korean J. Chem. Eng., 28(6), 1380 (2011)
  5. Jung IL, Park YC, Park DH, Korean J. Chem. Eng., DOI:10.1007/s11814-016-0011-z.
  6. Lan R, Irvine JTS, Tao S, Sci. Rep., 3, 1145 (2013)
  7. Murakami T, Nohira T, Ogata YH, Ito Y, Electrochem. Solid State Lett., 8(1), E1 (2005)
  8. Haarberg GM, Egan JJ, Ber. Bunsen-Ges. Phys. Chem., 102, 1298 (1998)
  9. Murakami T, Nishikiori T, Nohira T, Ito Y, J. Am. Chem. Soc., 125(2), 334 (2003)
  10. Murakami T, Nohira T, Goto T, Ogata YH, Ito Y, Electrochim. Acta, 50(27), 5423 (2005)
  11. Murakami T, Nohira T, Araki Y, Goto T, Hagiwara R, Ogata YH, Electrochem. Solid State Lett., 10(4), E4 (2007)
  12. Murakami T, Nohira T, Ogata YH, Ito Y, Electrochem. Solid State Lett., 8(4), D12 (2005)
  13. Murakami T, Nohira T, Ogata YH, Ito Y, J. Electrochem. Soc., 152(6), D109 (2005)
  14. Murakami T, Nishikiori T, Nohira T, Ito Y, Electrochem. Solid State Lett., 8(8), D19 (2005)
  15. Kim K, Kim JN, Yoon HC, Han JI, Int. J. Hydrog. Energy, 40(16), 5578 (2015)
  16. Li FF, Licht S, Inorg. Chem., 53(19), 10042 (2014)
  17. Park BH, Hur JM, Korean J. Chem. Eng., 27(4), 1278 (2010)
  18. Laitinen HA, Ferguson WS, Osteryoung RA, J. Electrochem. Soc., 104, 516 (1957)
  19. Amezawa K, Ito Y, Tomii Y, J. Electrochem. Soc., 141(11), 3096 (1994)
  20. Goto T, Ito Y, Electrochim. Acta, 43(21-22), 3379 (1998)
  21. Haarberga GM, Kvalheima E, Rolsethb S, Murakamic T, Pietrzykd S, Wange S, ECS Trans., 3(35), 341 (2007)
  22. Licht S, Wang B, Chem. Commun., 46, 7004 (2010)
  23. Wang C, de Bakker J, Belt CK, Jha A, Neelameggham NR, Pati S, Prentice LH, Tranell G, Brinkman KS, Energy Technology 2014: Carbon Dioxide Management and Other Technologies, Wiley, 92 (2013).
  24. Sahoo PC, Kim K, Lee JH, Han JI, Oh YK, ACS Sustainable Chem. Eng., 3, 1764 (2015)
  25. Jennings JR, Catalytic ammonia synthesis: fundamentals and practice, p. 351, Plenum, New York (1991).
  26. Wang WX, Zhao HQ, Du BS, Wen JM, Li F, Wang DM, Appl. Catal. A: Gen., 122(1), 5 (1995)
  27. Smith PJ, Taylor DW, Dowden DA, Kemball C, Taylor DJ, Appl. Catal., 3, 303 (1982)