화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.6, 1865-1871, June, 2016
Bio-electrochemical conversion of atmospheric N2 to ammonium using free-living diazotrophs
E-mail:
The effects of electrochemical reducing power on enrichment, growth, and ammonium production of freeliving diazotrophs from rhizosphere soil were evaluated. Soil bacteria were cultivated in a conventional bioreactor (CBR) and an electrochemical bioreactor (EBR), both containing a neutral red-modified graphite felt (NR-GF) cathode and a platinum anode, but with electricity charged to the EBR only. Temperature gradient gel electrophoresis identified 21 species from rhizosphere soil, and 17 and seven species from the CBR and EBR, respectively, after 40 days of incubation. Six species from the CBR and five species from the EBR were diazotrophs. The bacterial community biomass and the ammonium content in the bacterial culture were, respectively, 1.6 and 2 times higher in the EBR than in the CBR. These results indicate that the electrochemical reducing power generated from the NR-GF may be a driving force in the activation of enrichment, growth, and N2-fixing metabolism of diazotrophs.
  1. Boyd ES, Lange RK, Mitchell AC, Having JR, Hamilton TL, Lafreniere MJ, Shock EL, Peters JW, Skidmore M, Appl. Environ. Microbiol., 77, 4778 (2011)
  2. Bebout BM, Fitzpatrick MW, Paerl HW, Appl. Environ. Microbiol., 59, 1495 (1993)
  3. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J, Appl. Environ. Microbiol., 68, 1854 (2002)
  4. Lupwayi NZ, Rice WA, Clayton GW, Soil Biol. Biochem., 30, 1733 (1998)
  5. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR, Appl. Environ. Microbiol., 70, 973 (2004)
  6. De Luca TH, Drinkwater LE, Wiefling BA, DeNicola DM, Biol. Fertil. Soils, 23, 140 (1996)
  7. Kahindi JHP, Woomer P, George T, Moreira FMD, Karanja NK, Giller KE, Appl. Soil Ecol., 6, 55 (1997)
  8. Hardy RWF, D’Eustachio AJ, Biochem. Biophys. Res. Commun., 15, 314 (1964)
  9. Kremers SPJ, de Bruijn GJ, Visscher TLS, van Mechelen W, de Vries NK, Brug J, Int. J. Behav. Nutr. Phys. Acta, 3, 9 (2006)
  10. Park DH, Zeikus JG, J. Bacteriol., 181, 2403 (1999)
  11. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG, Appl. Environ. Microbiol., 65, 2912 (1999)
  12. Kanamori K, Weiss RL, Roberts JD, J. Bacteriol., 172, 1962 (1990)
  13. Hardy RWF, Knight E, Biochim. Biophys. Acta, 122, 520 (1966)
  14. Kang HS, Na BK, Park DH, Biotechnol. Lett., 29(8), 1277 (2007)
  15. Jeon BY, Jung IL, Park DH, J. Microbiol. Biotechnol., 21, 90 (2011)
  16. Hosseini SM, Hamidi A, Moghadassi A, Madaeni SS, Korean J. Chem. Eng., 32(3), 429 (2015)
  17. Cheung PY, Kinkle BK, Appl. Environ. Microbiol., 67, 2222 (2001)
  18. Orr CH, James A, Leifert C, Cooper JM, Cummings SP, Appl. Environ. Microbiol., 77, 911 (2010)
  19. Yang CH, Crowley DE, Appl. Environ. Microbiol., 66, 345 (2000)
  20. Holl CM, Montoya JP, J. Phycol., 41, 1178 (2005)
  21. Christiansen-Weniger C, van Ven JA, Biol. Fertil. Soils, 12, 100 (1991)
  22. Jeon BY, Jung IL, Park DH, J. Environ. Protect., 3, 55 (2012)
  23. Agawin NAE, Limnol. Oceanogr., 52, 2233 (2007)
  24. Oritiz-Marquez JCF, Nascimento MD, de los Angeles Dublan M, Curatti L, Appl. Environ. Microbiol., 78, 2345 (2012)
  25. Chen GW, Choi SJ, Cha JH, Lee TH, Kim CW, Korean J. Chem. Eng., 27(5), 1513 (2010)
  26. Shanmugam KT, Valentine RC, Proc. Natl. Acad. Sci. USA, 72, 136 (1975)
  27. Colnaghi R, Green A, He L, Rudnick P, Kennedy C, Plant Soil, 194, 145 (1997)
  28. Hongo M, Iwahara M, Agric. Biol. Chem., 43, 2075 (1979)
  29. Gregory KB, Bond DR, Lovely DR, Environ. Microbiol., 6, 596 (2004)
  30. Rabaey K, Girguis P, Nielsen LK, Curr. Opin. Biotechnol., 22, 1 (2011)