Applied Chemistry for Engineering, Vol.27, No.3, 265-269, June, 2016
Covalent Organic Framework (COF-10)를 이용한 암모니아 흡착 및 탈착에 관한 연구
Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10
E-mail:
초록
수소가 청정 에너지 원으로서의 중요성이 증가하면서 수소의 생산원인 암모니아 기체가 큰 주목을 받고 있다. 그러나 암모니아가 금속을 잘 부식시키고 유독성을 가지고 있기 때문에 암모니아의 저장과 운반을 가능하게 하는 흡착제의 연구가 다각도로 진행되고 있다. 이 중 공유결합 유기구조 물질(covalent organic framework)의 하나인 COF-10은 붕소를 포함한 큰 기공을 가진 물질이다. 암모니아 흡착과정에서 COF-10의 구조 안에 있는 붕소는 루이스 산으로 작용하여 암모니아와 강한 결합을 한다. 본 논문에서는 이러한 COF-10을 합성하여 BET, XRD, FT-IR을 통해 구조를 확인한다. 또한 TPD와 등온 흡착 실험을 통해 실제 암모니아의 흡착능력에 대한 분석을 진행하였다. COF-10는 9.79 mmol/g 으로 우수한 암모니아 흡착 능력을 보였으며 암모니아 흡착제로서 활용 가능할 것으로 사료된다.
Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.
- Phillips J, Control and pollution prevention options for ammonia emissions, EPA-456/R-95-002, 1-69, ViGYAN Incorporated, VA, USA (1995).
- Kramer DA, Mineral and Commodities Summaries, US Geological Survey, Washington, USA (2007).
- Song Y, Dai JH, Int. J. Hydrog. Energy, 38(34), 14668 (2013)
- Glover TG, Peterson GW, DeCoste JB, Browe MA, Langmuir, 28(28), 10478 (2012)
- Qajar A, Peer M, Andalibi MR, Rajagopalan R, Foley HC, Microporous Mesoporous Mater., 218, 15 (2015)
- Furtado AMB, Wang Y, Glover TG, LeVan MD, Microporous Mesoporous Mater., 142, 730 (2011)
- Petit C, Mendoza B, Bandosz TJ, Langmuir, 26(19), 15302 (2010)
- Yan T, Li TX, Li H, Wang RZ, Int. J. Refrig. -Rev. Int. Froid, 46, 165 (2014)
- Christensen CH, Sorensen RZ, Johannessen T, Quaade UJ, Honkala K, Elmoe TD, Kohler R, Norskov JK, J. Mater. Chem., 15, 4106 (2005)
- Beaudoin D, Maris T, Wuest JD, Nat. Chem., 5, 830 (2013)
- Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Martzger AJ, Yaghi OM, Science, 310(5751), 1166 (2005)
- Xiang Z, Cao D, J. Mater. Chem. A, 1, 2691 (2012)
- Dienstmaier JF, Gigler AM, Goetz AJ, Knochel P, Bein T, Lyapin A, Reichlmaier S, Heckl WM, Lackinger M, ACS Nano, 5(12), 9737 (2011)
- Xu Y, Jin S, Xu H, Nagai A, Jiang D, Chem. Soc. Rev., 42, 8012 (2013)
- Liu Q, Tang Z, Wu M, Zhou Z, Polym. Int., 63(3), 381 (2014)
- Kalidindi SB, Wiktor C, Ramakrishnan A, Webing J, Schneemann A, Tendeloo GV, Fischer RA, Chem. Commun., 49, 463 (2013)
- Hunt JR, Doonan CJ, LeVangie JD, Cote AP, Yaghi OM, J. Am. Chem. Soc., 130(36), 11872 (2008)
- Zhao L, Zhong C, J. Phys. Chem. C, 113(39), 16860 (2009)
- Spitler EL, Giovino MR, White SL, Dichtel WR, Chem. Sci., 2, 1588 (2011)
- Zhang J, Wang L, Li N, Liu J, Zhang W, Zhou N, Zhu X, Cryst. Eng. Comm., 16, 6547 (2014)
- Peng Y, Ben T, Jia Y, Yang D, Zhao H, Qiu S, Yao X, J. Phys. Chem., 116(49), 25694 (2012)
- Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM, Nat. Chem., 2, 235 (2010)
- Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM, J. Am. Chem. Soc., 129(43), 12914 (2007)
- Guan GQ, Kida T, Kusakabe K, Kimura K, Abe E, Yoshida A, Appl. Catal. A: Gen., 295(1), 71 (2005)