Applied Chemistry for Engineering, Vol.27, No.3, 307-312, June, 2016
계면활성제를 이용한 수열합성법에 의한 PbMoO4의 합성 및 그들의 광촉매 활성
Synthesis of PbMoO4 Using a Facile Surfactant-assisted Hydrothermal Method and Their Photocatalytic Activity
초록
PbMoO4를 계면활성제를 이용하여 수열합성법으로 합성하였고, XRD, Raman, TEM, PL, BET 및 DRS 등에 의해 특성분석을 하였다. 이들을 사용하여 자외선 조사 하에서 Rhodamine B의 광분해 반응에서의 활성을 조사하였다. XRD 및 Raman의 분석 결과로부터 계면활성제를 이용한 손쉬운 수열합성에 의해 잘 결정화된 PbMoO4 구조를 가진 촉매들이 합성되었으며 52에서 69 nm의 크기를 나타내었다. cetyltrimethylammonium bromide (CTAB)를 계면활성제로 사용하여 합성된 PbMoO4는 P-25와 순수한 PbMoO4 보다 높은 광촉매 활성을 나타내었다. pH 9에서 합성된 PbMoO4 촉매가 가장 높은 활성을 나타내었다. 모든 촉매들은 540 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 Rhodamine B의 광분해 활성이 증가하는 것으로 나타났다.
Lead molybdate (PbMoO4) was successfully synthesized using a facile surfactant-assisted hydrothermal process and characterized by XRD, Raman, TEM, PL, BET and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamine B under UV-light irradiation. From XRD and Raman results, well-crystallized PbMoO4 crystals were successfully synthesized with the particle size of 52-69 nm. PbMoO4 catalysts prepared in the presence of cetyltrimethyl ammonium bromide (CTAB) enhanced the photocatalytic activity compared to that of using P-25 and pure PbMoO4 catalysts. The maximum photocatalytic activity of PbMoO4 catalyst were observed when preparing it in pH 9 solution. The The PL peak at about 540 nm were observed for all catalysts and the excitonic PL signal increased proportionally with respect to the photocatalytic activity of Rhodamine B.
Keywords:PbMoO4 catalyst;surfactant-assisted hydrothermal process;photocatalytic decomposition of Rhodamine B
- Chen H, Ge C, Li R, Wang J, Wu C, Zeng X, J. Phys. Chem. C, 113, 5812 (2009)
- Liu J, Ma J, Lin B, Ren Y, Jiang X, Tao J, Zhu X, Ceram. Int., 34, 1557 (2008)
- Sayama K, Nomura A, Zou ZG, Abe R, Abe Y, Arakawa H, Chem. Commun., 24, 2908 (2003)
- Ting R, Lermer L, Perrin DM, J. Am. Chem. Soc., 126(40), 12720 (2004)
- Hameed A, Montini T, Gombac V, Fornasiero P, J. Am. Chem. Soc., 130(30), 9658 (2008)
- Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS, J. Am. Chem. Soc., 131(9), 3152 (2009)
- Zheng Y, Duan F, Wan J, Liu L, Chen MQ, Xie Y, J. Mol. Catal. A-Chem., 303(1-2), 9 (2009)
- Shen M, Zhang Q, Chen H, Peng T, Cryst. Eng. Commun., 13, 2785 (2011)
- Bi JH, Wu L, Zhang YF, Li ZH, Li JQ, Fu XZ, Appl. Catal. B: Environ., 91(1-2), 135 (2009)
- Cullity BD, Elements of X-Ray Diffraction, Adison-Wesley, Reading, MA (1978).
- Phuruangrat A, Thongtem T, Thongtem S, J. Cryst. Growth, 311(16), 4076 (2009)
- Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li MS, Andre´s A, J. Phys. Chem. C, 113, 5812 (2009)
- Jung WY, Lee GD, Park SS, Lim KW, Lee MS, Hong SS, J. Nanosci. Nanotechnol., 11, 7446 (2011)