화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.3, 307-312, June, 2016
계면활성제를 이용한 수열합성법에 의한 PbMoO4의 합성 및 그들의 광촉매 활성
Synthesis of PbMoO4 Using a Facile Surfactant-assisted Hydrothermal Method and Their Photocatalytic Activity
초록
PbMoO4를 계면활성제를 이용하여 수열합성법으로 합성하였고, XRD, Raman, TEM, PL, BET 및 DRS 등에 의해 특성분석을 하였다. 이들을 사용하여 자외선 조사 하에서 Rhodamine B의 광분해 반응에서의 활성을 조사하였다. XRD 및 Raman의 분석 결과로부터 계면활성제를 이용한 손쉬운 수열합성에 의해 잘 결정화된 PbMoO4 구조를 가진 촉매들이 합성되었으며 52에서 69 nm의 크기를 나타내었다. cetyltrimethylammonium bromide (CTAB)를 계면활성제로 사용하여 합성된 PbMoO4는 P-25와 순수한 PbMoO4 보다 높은 광촉매 활성을 나타내었다. pH 9에서 합성된 PbMoO4 촉매가 가장 높은 활성을 나타내었다. 모든 촉매들은 540 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 Rhodamine B의 광분해 활성이 증가하는 것으로 나타났다.
Lead molybdate (PbMoO4) was successfully synthesized using a facile surfactant-assisted hydrothermal process and characterized by XRD, Raman, TEM, PL, BET and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamine B under UV-light irradiation. From XRD and Raman results, well-crystallized PbMoO4 crystals were successfully synthesized with the particle size of 52-69 nm. PbMoO4 catalysts prepared in the presence of cetyltrimethyl ammonium bromide (CTAB) enhanced the photocatalytic activity compared to that of using P-25 and pure PbMoO4 catalysts. The maximum photocatalytic activity of PbMoO4 catalyst were observed when preparing it in pH 9 solution. The The PL peak at about 540 nm were observed for all catalysts and the excitonic PL signal increased proportionally with respect to the photocatalytic activity of Rhodamine B.
  1. Chen H, Ge C, Li R, Wang J, Wu C, Zeng X, J. Phys. Chem. C, 113, 5812 (2009)
  2. Liu J, Ma J, Lin B, Ren Y, Jiang X, Tao J, Zhu X, Ceram. Int., 34, 1557 (2008)
  3. Sayama K, Nomura A, Zou ZG, Abe R, Abe Y, Arakawa H, Chem. Commun., 24, 2908 (2003)
  4. Ting R, Lermer L, Perrin DM, J. Am. Chem. Soc., 126(40), 12720 (2004)
  5. Hameed A, Montini T, Gombac V, Fornasiero P, J. Am. Chem. Soc., 130(30), 9658 (2008)
  6. Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS, J. Am. Chem. Soc., 131(9), 3152 (2009)
  7. Zheng Y, Duan F, Wan J, Liu L, Chen MQ, Xie Y, J. Mol. Catal. A-Chem., 303(1-2), 9 (2009)
  8. Shen M, Zhang Q, Chen H, Peng T, Cryst. Eng. Commun., 13, 2785 (2011)
  9. Bi JH, Wu L, Zhang YF, Li ZH, Li JQ, Fu XZ, Appl. Catal. B: Environ., 91(1-2), 135 (2009)
  10. Cullity BD, Elements of X-Ray Diffraction, Adison-Wesley, Reading, MA (1978).
  11. Phuruangrat A, Thongtem T, Thongtem S, J. Cryst. Growth, 311(16), 4076 (2009)
  12. Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li MS, Andre´s A, J. Phys. Chem. C, 113, 5812 (2009)
  13. Jung WY, Lee GD, Park SS, Lim KW, Lee MS, Hong SS, J. Nanosci. Nanotechnol., 11, 7446 (2011)