화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.3, 335-341, June, 2016
지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석:염화제일수은에 대한 응용성
Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride
E-mail:
초록
본 연구에서는 지상 및 미소중력환경하에서 물리적 승화법 공정에서의 확산-대류유동에 미치는 불순물의 영향을 이론적으로 Hg2Cl2-I2 시스템에 적용하여 규명하는 것이다. 이론적 해석은 증기상에서 확산-대류 흐름, 열 및 물질전달을 속도 벡터 흐름, 유선, 온도, 농도 분포를 통하여 제시된다. 결정 영역에서의 전체 몰플럭스는 중력가속도와 성분 I2, 불순물에 상당히 민감하게 반응한다. 성분 I2을 증가시켰을 때, 농도 대류효과는 확산-대류 유동흐름을 안정화시키는 경향이 있다. 지상중력가속도의 0.001환경에서는 유동흐름은 1차원포물선의 흐름 구조를 나타내며, 확산지배형태를 보여주고 있다. 10-3지상중력가속도 이하에서는 대류 영향은 무시할 수 있다.
In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of Hg2Cl2-I2 system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component I2 as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component I2. Under microgravity conditions below 10-3g0, the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than 10-3g0, the effects of convection would be negligible.
  1. Benz KW, Dold P, J. Cryst. Growth, 237, 1638 (2002)
  2. Fontana P, Schefer J, Pettit D, J. Cryst. Growth, 324(1), 207 (2011)
  3. Nobeoka M, Takagi Y, Okano Y, Hayakawa Y, Dost S, J. Cryst. Growth, 385, 66 (2014)
  4. Kinoshita K, Arai Y, Inatomi Y, Tsukada T, Adachi S, Miyata H, Tanaka R, Yoshikawa J, Kihara T, Tomioka H, Shibayama H, Kubota Y, Warashina Y, Sasaki Y, Ishizuka Y, Harada Y, Wada S, Harada C, Ito T, Takayanagi M, Yoda S, J. Cryst. Growth, 388, 12 (2014)
  5. Abe K, Sumioka S, Sugioka KI, Kubo M, Tsukada T, Kinoshita K, Arai Y, Inatomi Y, J. Cryst. Growth, 402, 71 (2014)
  6. Stelian C, Duffar T, J. Cryst. Growth, 429, 19 (2015)
  7. Li Z, Peterson JH, Yeckel A, Derby JJ, J. Cryst. Growth, Doi: 10.1016/j.jcrysgro.2015.12.046.
  8. Duval WMB, Singh NB, Glicksman ME, J. Cryst. Growth, 174, 120 (1997)
  9. Kolesnikova EN, Polovko YA, Yuferev VS, Zhmakin AI, J. Cryst. Growth, 180, 578 (1997)
  10. Otalora F, Garcia-Ruiz JM, J. Cryst. Growth, 182, 141 (1997)
  11. Garcia-Ruiz JM, Otalora F, J. Cryst. Growth, 182, 155 (1997)
  12. Lan CW, Tu CY, J. Cryst. Growth, 237, 1881 (2002)
  13. Maruyama S, Ohno K, Komiya A, Sakai S, J. Cryst. Growth, 245(3-4), 278 (2002)
  14. Catauro M, Bollino F, Papale F, Acta Astronaut., 122, 237 (2016)
  15. Harth K, Trittel T, May K, Wegner S, Stannarius R, Adv. Space Res., 55, 1901 (2015)
  16. Nishino K, Yano T, Kawamura H, Matsumoto S, Ueno I, Ermakov MK, J. Cryst. Growth, 420, 57 (2015)
  17. Yang Y, Pan LM, Xu JJ, Acta Astronaut., 100, 129 (2014)
  18. Melnikov DE, Shevtsova V, Yano T, Nishino K, Int. J. Heat Mass Transf., 87, 119 (2015)
  19. Konishi C, Mudawar I, Int. J. Heat Mass Transf., 80, 469 (2015)
  20. Carotenuto L, Prog. Cryst. Growth Charact. Mater., 48-49, 166 (2004)
  21. Yeckel A, Derby JJ, J. Cryst. Growth, 263(1-4), 40 (2004)
  22. Zeng Z, Mizuseki H, Simamura K, Fukuda T, Higashino K, Kawazoe Y, Int. J. Heat Mass Transf., 44(19), 3765 (2001)
  23. Maekawa T, Hiraoka Y, Ikegami K, Matsumoto S, J. Cryst. Growth, 229(1), 605 (2001)
  24. Liu DR, Mangelinck-Noel N, Gandin CA, Zimmermann G, Sturz L, Nguyen-Thi H, Billia B, Acta Mater., 93, 24 (2015)
  25. Tebbe PA, Loyalka SK, Duval WMB, Finite Elem. Anal. Des., 40, 1499 (2004)
  26. Singh NB, Gottlieb M, Brandt GB, Stewart AM, Mazelsky R, Glicksman ME, J. Cryst. Growth, 137, 155 (1994)
  27. Lee YK, Kim GT, J. Korean Cryst. Growth Cryst. Technol., 23, 20 (2013)
  28. Kim GT, Appl. Chem. Eng., 26(6), 746 (2015)
  29. Kim GT, Kwon MH, Korean Chem. Eng. Res., 52(1), 75 (2014)
  30. Greenwell DW, Markham BL, Rosenberger F, J. Cryst. Growth, 51, 413 (1981)
  31. Markham BL, Greenwell DW, Rosenberger F, J. Cryst. Growth, 51, 426 (1981)