Korean Chemical Engineering Research, Vol.54, No.3, 340-349, June, 2016
전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화
Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process
E-mail:
초록
본 연구에서는 정유산업의 유지 및 보수기간에 배출되는 고농도폐수의 COD (Chemical Oxygen Demand)를 효과적으로 제거하기 위해 전기산화공법을 적용하였다. 우선 산업에서 배출되는 실제 폐수를 처리하기 위하여 BDD전극을 개발하고, 개발된 전극을 이용하여 전류밀도, pH, 전해질농도, 반응시간 등과 같은 다양한 운전조건하에 실험을 진행하였다. 둘째, 이러한 실험결과를 이용하여 전기분해의 kinetic parameter를 산출한 후에, 이를 토대로 전기산화 처리설비를 수학적으로 모델링 하였다. 마지막으로, 기존에 정상운전 조건 시 사용하던 저 농도 폐수를 처리하는 공정의 유입조건에 맞추기 위하여 전기산화 처리설비의 설계 및 운전의 다양한 변수들을 최적화함으로써 보다 효율적인 폐수전처리 시스템을 개발하였다. 본 연구를 통해 개발된 모델의 결정계수(R2)는 0.982로 상당히 작은 오차범위를 보여줌으로써 모델의 높은 정확도를 입증하였다.
Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination (R2) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.
- Lee SH, Moon HJ, Kim YM, J. of KSEE, 25(1), 87 (2003)
- Kim DS, Park YS, J. Env. Hlth. Sci., 35(3), 201 (2009)
- Juttner K, Galla U, Schmieder H, Electrochim. Acta, 45(15), 2575 (2000)
- Kim DS, Park YS, J. Env. Hlth. Sci., 35(4), 295 (2009)
- Chen XM, Gao FR, Chen GH, J. Appl. Electrochem., 35(2), 185 (2005)
- Lee J, Lee JK, Uhm S, Lee HJ, Appl. Chem. Eng., 22(3), 235 (2011)
- Sharifian H, Kirk D, J. Electrochem. Soc., 133(5), 921 (1986)
- Correalozano B, Comninellis C, Debattisti A, J. Appl. Electrochem., 26(7), 683 (1996)
- Tenne R, Patel K, Hashimoto K, Fujishima A, J. Electroanal. Chem., 347(1), 409 (1993)
- Carey JJ, Christ JCS, Lowery SN, US Patent 5,399,247 (1995).
- Panizza M, Michaud P, Cerisola G, Comninellis C, J. Electroanal. Chem., 507(1), 206 (2001)
- Panizza M, Kapalka A, Comninellis C, Electrochim. Acta, 53(5), 2289 (2008)
- Canizares P, Garcia-Gomez J, Lobato J, Rodrigo MA, Ind. Eng. Chem. Res., 43(9), 1915 (2004)
- Mascia M, Vacca A, Palmas S, Polcaro AM, J. Appl. Electrochem., 37(1), 71 (2007)
- Baek J, Lee G, Korean Chem. Eng. Res., 52(5), 564 (2014)
- Comninellis C, Pulgarin C, J. Appl. Electrochem., 23(2), 108 (1993)
- Pulgarin C, Adler N, Peringer P, Comninellis C, Water Res., 28(4), 887 (1994)
- Martinez-Huitle CA, Andrade LS, Quimica Nova, 34(5), 850 (2011)
- Mraz R, Krysa J, J. Appl. Electrochem., 24(12), 1262 (1994)
- Chen GH, Sep. Purif. Technol., 38(1), 11 (2004)
- Kotz R, Stucki S, Carcer B, J. Appl. Electrochem., 21(1), 14 (1991)
- Marincic L, Leitz F, J. Appl. Electrochem., 8(4), 333 (1978)
- Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A, J. Electroanal. Chem., 146(6), 2175 (1999)
- Kirk D, Sharifian H, Foulkes F, J. Appl. Electrochem., 15(2), 285 (1985)
- Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F, Environ. Sci. Technol., 32(22), 3570 (1998)
- Rodgers JD, Jedral W, Bunce NJ, Environ. Sci. Technol., 33(9), 1453 (1999)
- Choi JY, “Application of Boron-doped Diamond Anodes to Electrochemical Oxidation of Organic Pollutants,” Master’s thesis, Korea Advanced Institute of Science and Technology, 2008.
- Park HE, Row KH, Appl. Chem. Eng., 24(3), 299 (2013)
- Kim DS, Park YS, J. Env. Hlth. Sci., 36(4), 313 (2010)
- Aslan N, Powder Technol., 185(1), 80 (2008)
- Kim DS, Park YS, J. Env. Hlth. Sci., 31(12), 1081 (2009)
- Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M, Chem. Eng. J., 149(1), 207 (2009)