화학공학소재연구정보센터
Journal of Food Engineering, Vol.181, 10-19, 2016
Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging, and band ratio
Since 2008, the detection of the adulterant melamine (2,4,6-triamino-1,3,5-triazine) in food products has become the subject of research due to several food safety scares. Near-infrared (NIR) hyperspectral imaging offers great potential for food safety and quality research because it combines the features of vibrational spectroscopy and digital imaging. In this study, NIR hyperspectral imaging was investigated for quantitative evaluation of melamine particles in nonfat and whole milk powders. Melamine was mixed into milk powders in a concentration range of 0.02-1.00% (w/w). A NIR hyperspectral imaging system was used to acquire images (938-1654 nm) of melamine powder, whole milk powder, nonfat milk powder, and mixtures of melamine and each of the milk powders. Two optimal bands (1447 nm and 1466 nm) were selected by a linear correlation algorithm with pure milk and pure melamine. Band ratio (13144711455) images coupled with a single threshold were used to create resultant images to visualize identification and distribution of the melamine adulterant particles in milk powders. The identification results were verified by spectral feature comparison between separated mean spectra of melamine pixels and milk pixels. Linear correlations (r) were found between the number of pixels identified as containing melamine and melamine concentration in nonfat milk and whole milk powders, which were 0.980 and 0.970 or higher, respectively. The study demonstrated that the combination of NIR hyperspectral imaging and simple band ratioing was promising for rapid quantitative analysis of melamine in milk powders. Published by Elsevier Ltd.