- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.38, 217-223, June, 2016
A fluidized bed reactor as an approach to enzymatic biodiesel production in a process with simultaneous glycerol removal
E-mail:
The hydrodynamic characteristics and operational conditions to produce biodiesel by the ethanolysis of babassu oil catalyzed by immobilized lipase (Novozym® 435) were established in a fluidized bed reactor coupling with a column to simultaneous remove glycerol formed as byproduct. Hydrodynamics was determined by means of pulse tracer trials and results showed that the flow pattern can be described as an ideal continuous flow stirred tank. The best performance was obtained by running the reactor with biocatalyst loading of 12% and a space-time of 8 h, attaining an average yield of 98.1% and productivity of 9.9 molester/gcat/min.
Keywords:Biodiesel;Fluidized bed reactor;Glycerol removal;Solvent-free system;Novozym® 435;Lewatit® GF202
- Knothe G, Gerpen JHV, Krahl J, The Biodiesel Handbook, AOCS Press, 2005.
- Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN, J. Ind. Eng. Chem., 19(1), 14 (2013)
- Knothe G, Energy Fuels, 22(2), 1358 (2008)
- Muhammad N, Elsheikh YA, Mutalib MIA, Bazmi AA, Khan RA, Khan H, Rafiq S, Man Z, khan I, J. Ind. Eng. Chem., 21, 1 (2015)
- Tan T, Lu J, Nie K, Deng L, Wang F, Biotecnol. Adv., 28, 628 (2010)
- Christopher LP, Kumar H, Zambare VP, Appl. Energy, 119, 497 (2014)
- Szczesna-Antczak M, Kubiak A, Antczak T, Bielecki S, Renew. Energy, 34(5), 1185 (2009)
- Zhao Z, Qi F, Yuan C, Du W, Liu D, Renew. Sust. Energ. Rev., 44, 182 (2015)
- Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ, Biotechnol. Adv., 33, 511 (2015)
- Yusuf C, in: Ratledge C, Kristiansen B (Eds.), Basic Biotechnology, 3rd ed., Cambridge University Press, Cambridge, 2006, p. 181.
- Xue R, Woodley JM, Bioresour. Technol., 115, 183 (2012)
- Ricca E, Paola MG, Calabro V, Curcio S, Iori G, Asian Pac. J. Chem. Eng., 4, 365 (2009)
- Zhou GX, Chen GY, Yan BB, Biotechnol. Lett., 36(1), 63 (2014)
- Stamenkovic OS, Velickovic AV, Veljkovic VB, Fuel, 90(11), 3141 (2011)
- Vieitez I, da Silva C, Alckmin I, Borges GR, Corazza FC, Oliveira JV, Grompone MA, Jachmanian I, Renew. Energy, 35(9), 1976 (2010)
- Teixeira MA, Biomass Bioenerg., 32(9), 857 (2008)
- Freitas L, Da Ros PCM, Santos JC, de Castro HF, Process Biochem., 44(10), 1068 (2009)
- Simoes AS, Ramos L, Freitas L, Santos JC, Zanin GM, De Castro HF, Biofuel Res. J., 6, 242 (2015)
- Silva WCe, Teixeira LF, Carvalho AKF, Mendes AA, de Castro HF, J. Ind. Eng. Chem., 20(3), 881 (2014)
- Levenspiel O, Chemical Reaction Engineering, 8th ed., John Wiley, New York, 1999.
- Richardson JH, Zaki WN, TI Chem. Eng.-Lond., 32, 35 (1954)
- Fogler HS, Elements of Chemical Reaction Engineering, 3th ed., Prentice Hall, Englewood Cliffs, NJ, 1999.
- Harris AT, Davidson JF, Thorpe RB, Chem. Eng. Sci., 58(16), 3669 (2003)
- Urioste D, Castro MBA, Biaggio FC, de Castro HF, Quim. Nova, 31, 407 (2008)
- Andrade GSS, Carvalho AKF, Romero CM, Oliveira PC, De Castro HF, Bioprocess. Biosyst. Eng., 37, 2539 (2014)
- Abidin MIIZ, Raman AAA, Nor MIM, Ind. Eng. Chem. Res., 52(46), 16085 (2013)
- Xu Y, Norbdblad M, Nielsen PM, Brask J, Woodley JM, J. Mol. Catal. B-Enzym., 72, 213 (2011)