화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.6, 522-528, June, 2016
Development and characterization of polyethylenimine nanocarriers processed by an inductive thermospraying technique
E-mail:
Using a high temperature vaporizing spray approach to nanoparticle fabrication, we reveal a straightforward process for the formation of polyethyleneimine (PEI) scaffold based hydrogel nanoparticles. With PEI as the polymeric skeleton, we demonstrate the possibility for capture and release of small molecule, protein, nucleic acid, or colloidal cargo. Here, we provide evidence for use of the PEI nanoparticles as versatile nanocarriers. Moreover, we provide characterization of the nanoparticles produced by our inductive heat spraying approach along with determination of the loading capacity for the various cargos. We also observed the release profiles for a traceable small molecule in our proof of concept work. While linear chains or dendrimers of PEI are well-known to be cytotoxic, we revealed that our larger scale nanoparticles (which are in the range of 400-500 nm) have no noticeable cytotoxicity in vitro. With this initial work, we expect the intrinsic capabilities of the PEI nanoparticle scaffold demonstrated here in terms of molecular capture may possibly be utilized for effective nanocarriers upon future tuning of the nanoparticle size as to avoid any rapid clearance.
  1. Elsabahy M, Wooley KL, Chem. Soc. Rev., 41, 2545 (2012)
  2. Nguyen DH, Lee JS, Choi JH, Lee Y, Son JY, Bae JW, Lee K, Park KD, Macromol. Res., 23(8), 765 (2015)
  3. Kim BJ, Min KH, Hwang GH, Lee HJ, Jeong SY, Kim EC, Lee SC, Macromol. Res., 23(1), 111 (2015)
  4. Siepmann J, Siegel RA, Rathbone MJ, Fundamentals and Applications of Controlled Release Drug Delivery, Springer Science & Business Media, 2011.
  5. Grandinetti G, Smith AE, Reineke TM, Mol. Pharm., 9, 523 (2012)
  6. Helander IM, Alakomi HL, Latva-Kala K, Koski P, Microbiology, 143, 3193 (1997)
  7. Kim TH, Seo HW, Han J, Ko KS, Choi JS, Macromol. Res., 22(7), 757 (2014)
  8. Ihm JE, Krier I, Lim JM, Shim S, Han DK, Hubbell JA, Macromol. Res., 23(4), 387 (2015)
  9. Ahn NY, Kim TH, Song SJ, Moon JM, Ha TH, Choi JS, Macromol. Res., 23(8), 726 (2015)
  10. Seow WY, Liang K, Kurisawa M, Hauser CAE, Biomacromolecules, 14(7), 2340 (2013)
  11. Blakley C, Carmody J, Vestal M, Anal. Chem., 52, 1636 (1980)
  12. Koropchak JA, Veber M, Browner RF, Crit. Rev. Anal. Chem., 23, 113 (1992)
  13. Rao JP, Geckeler KE, Prog. Polym. Sci, 36, 887 (2011)
  14. Wang F, Liu P, Nie T, Wei H, Cui Z, Int. J. Mol. Sci., 14, 17 (2012)
  15. Amirav L, Lifshitz E, J. Phys. Chem. C, 112, 13105 (2008)
  16. Arpino PJ, Mass Spectrometry in the Biological Sciences: A Tutorial, 353, 253 (1992)
  17. Katas H, Alpar HO, J. Control. Release, 115, 216 (2006)
  18. Shin DH, Shim JY, Kim JH, Lee SY, Xuan S, Kim WY, Weon KY, Kim JS, Macromol. Res., 22(3), 344 (2014)
  19. Piest M, Engbersen JF, J. Control. Release, 148, 83 (2010)
  20. Maitani Y, Ishigaki K, Nakazawa Y, Aragane D, Akimoto T, Iwamizu M, Kai T, Hayashi K, J. Control. Release, 166, 139 (2013)
  21. Nam JP, Nah JW, Carbohydr. Polym., 135, 153 (2016)
  22. Vandebril S, Vermant J, Moldenaers P, Soft Matter, 6, 3353 (2010)
  23. Cavanaugh TJ, Nauman EB, J. Polym. Sci. B: Polym. Phys., 36(12), 2191 (1998)
  24. Pan L, Chen Z, Deng W, Yang G, Liu X, Macromol. Res., 1 (2016)
  25. Lee JH, Park J, Park JW, Ahn HJ, Jaworski J, Jung JH, Nat. Commun., 6 (2015)
  26. Pazur JH, Kleppe K, Biochemistry, 3, 578 (1964)
  27. Torres R, Mateo C, Fuentes M, Palomo JM, Ortiz C, Fernandez-Lafuente R, Guisan JM, Biotechnol. Prog., 18(6), 1221 (2002)
  28. Densmore CL, Orson FM, Xu B, Kinsey BM, Waldrep JC, Hua P, Bhogal B, Knight V, Mol. Ther., 1, 180 (2000)
  29. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL, Mol. Ther., 21, 149 (2013)
  30. Intra J, Salem AK, J. Control. Release, 130, 129 (2008)
  31. Tripathi S, Singh V, Gupta K, Kumar P, J. Mater. Chem. B, 1, 2515 (2013)