화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.39, 188-193, July, 2016
Facile construction of electrically-conductive carbon patterns from a cheap coal-type pitch and their application to electric heating devices
E-mail:, ,
Electrically-conductive carbon patterns (ECPs) from cheap pitch thin films were fabricated using a simple proton beam lithography and pyrolysis. Well-defined negative-type pitch patterns were formed at the optimized fluence of 3 × 1015 ions cm-2, and then pyrolyzed at various temperatures to create ECPs. The precursory pitch patterns formed at the optimized conditions were successfully temperature-dependently converted to the ECPs by pyrolysis. The formed ECPs through pyrolysis at a higher temperature exhibited good electrical conductivity. Moreover, the ECPs exhibited good electric heating characteristics, demonstrating the possibility of using the ECPs as a cheap electric heating element.
  1. Sharama S, Madou M, Bioinspir. Biomim. Nanobiomater., 1, 252 (2012)
  2. Zhang J, Zhao Y, Wei ZM, Sun YM, He YD, Di CA, Xu W, Hu WP, Liu YQ, Zhu DB, Adv. Funct. Mater., 21(4), 786 (2011)
  3. Mysyk R, Pinero ER, Beguin F, Electrochem. Commun., 11, 554 (2009)
  4. Hakan M, Braake YJT, Aran HC, Stamatialis DF, Wessling M, J. Membr. Sci., 349(1-2), 231 (2010)
  5. Sharma P, Damien D, Nagarajan K, Shaijumon MM, Hariharan M, J. Phys. Chem. Lett., 4, 3192 (2013)
  6. Xi S, Shi T, Long H, Xu L, Tang Z, Microsyst. Technol., 21, 1835 (2015)
  7. Lee K, Park J, Lee MS, Kim J, Hyun BG, Kang DJ, Na K, Lee CY, Bien F, Park JU, Nano Lett., 14, 2647 (2014)
  8. Jung CH, Kim WJ, Jung CH, Hwang IT, Khim D, Kim DY, Lee JS, Ku BC, Choi JH, Carbon, 87, 257 (2015)
  9. Wang X, Zhi L, Tsao N, Tomovic Z, Li J, Mullen K, Angew. Chem.-Int. Edit., 47, 2990 (2008)
  10. Hu LB, Hecht DS, Gruner G, Chem. Rev., 110(10), 5790 (2010)
  11. Ren S, Li R, Meng X, Li H, J. Mater. Chem., 22, 6171 (2012)
  12. Du J, Pei S, Ma L, Cheng HM, Adv. Mater., 18, 1958 (2014)
  13. Seguchi T, Kudoh H, Sugimoto M, Hama Y, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 151, 154 (1999)
  14. Li Y, Lee EJ, Cai W, Kim KY, Cho SO, ACS Nano, 2, 1108 (2008)
  15. Chennamsetty R, Escobar I, Xu XL, Desalination, 188(1-3), 203 (2006)
  16. Hwang IT, Oh MS, Jung CH, Choi JH, Biotechnol. Lett., 36(10), 2135 (2014)
  17. Sarkar M, Shukla N, Banerji N, Mohapatra YN, Appl. Surf. Sci., 258(9), 4195 (2012)
  18. Brun S, Savu V, Schintke S, Guibert E, Keppner H, Brugger J, Whitlow HJ, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 306, 292 (2013)
  19. Morilla IG, Abraham MH, de Kerckhove DG, Grime GW, J. Micromech. Microeng., 15, 706 (2005)
  20. Mendez A, Santamaria R, Menendez R, Bermejo J, J. Anal. Appl. Pyrolysis, 58-59, 825 (2001)
  21. Lee JS, Joh HI, Kim TW, Lee S, Org. Electron., 15, 132 (2014)
  22. Tejero VC, Carrasco S, Villoslada FN, Fierro JLG, Sanchez MDCC, Bondi MCM, Barrios CA, J. Mater. Chem. C, 1, 1392 (2013)
  23. Jones SP, Fain CC, Edie DD, Carbon, 35, 1533 (1997)
  24. Akrami HA, Yardim MF, Akar A, Ekinci E, Fuel, 76(14), 1389 (1997)
  25. Cristadoro A, Kulkarni SU, Burgess WA, Cervo EG, Rader HJ, Mullen K, Bruce DA, Thies MC, Carbon, 47, 2358 (2009)
  26. Tzeng SS, Pan JH, Mater. Chem. Phys., 74(2), 214 (2002)
  27. Petrova B, Budinova T, Petrov N, Yardim MF, Ekinci E, Razvigorova M, Carbon, 43, 261 (2005)
  28. Diez N, Alvarez P, Granda M, Blanco C, Santamaria R, Menendez R, Chem. Eng. J., 260, 463 (2015)
  29. Yoon SB, Chai GS, Kang SK, Yu JS, Gierszal KP, Jaroniec M, J. Am. Chem. Soc., 127(12), 4188 (2005)
  30. Ishihara A, Kawashima K, Wang XS, Shono H, Kabe T, Energy Fuels, 10(3), 726 (1996)
  31. Jain IP, Agarwal G, Surf. Sci. Rep., 66, 77 (2011)
  32. Du R, Ssenyange S, Aktary M, McDermott MT, Small, 5, 1162 (2009)
  33. Zhang YL, Guo L, Wei S, He YY, Xia H, Chen QD, Sun HB, Xiao FS, Nano Today, 5(1), 15 (2010)
  34. Wang Y, Serrano S, Santiago-Aviles JJ, J. Mater. Sci. Lett., 21(13), 1055 (2002)