- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.26, No.6, 347-352, June, 2016
이온 주입법을 이용한 ZnO 박막의 As 도핑
Arsenic Doping of ZnO Thin Films by Ion Implantation
E-mail:
ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, As+ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of 1.263 × 10 18 cm-3 were obtained when the dose of 5 × 10 14 As ions/cm2 was implanted and the RTA was conducted at 850 ℃ for 1 min.
Keywords:as doped p-type ZnO;ion implantation;pulsed laser deposition;rapid thermal annealing;wide band gap semiconductors
- Atsushi T, Masashi K, Akira O, Takeyoshi O, Keita O, Hideo O, Shigefusa FC, Masashi K, Jpn. J. Appl. Phys., 44, L643 (2005)
- Chu S, Olmedo M, Yang Z, Kong J, Liu J, Appl. Phys. Lett., 93, 181106 (2008)
- Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H, J. Cryst. Growth, 225(2-4), 110 (2001)
- Janotti A, Walle CGV, Phys. Rev. B, 76, 165202 (2007)
- Vaithianathan V, Lee BT, Kim SS, J. Appl. Phys., 98, 043519 (2005)
- Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Cantwell G, Appl. Phys. Lett., 81, 1830 (2002)
- Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A, Jpn. J. Appl. Phys., 36, L1453 (1997)
- Hwang DK, Kim HS, Lim JH, Oh JY, Yang JH, Park SJ, Kim KK, Look DC, Park YS, Appl. Phys. Lett., 86, 151917 (2005)
- Cao Y, Miao L, Tanemura S, Tanemura M, Kuno Y, Hayashi Y, Appl. Phys. Lett., 88, 251116 (2006)
- Hsu YF, Xi YY, Tam KH, Djurisic AB, Luo JM, Ling CC, Cheung CK, Ng AMC, Chan WK, Deng X, Beling CD, Fung S, Cheah KW, Fong PWK, Surya CC, Adv. Funct. Mater., 18(7), 1020 (2008)
- Braunstein G, Muraviev A, Saxena H, Dhere N, Richter V, Kalish R, Appl. Phys. Lett., 87, 192103 (2005)
- Fan JC, Sreekanth KM, Xie Z, Chang SL, Rao KV, Prog. Mater. Sci., 58(6), 874 (2013)
- Gu QL, Ling CC, Brauer G, Anwand W, Skorupa W, Hsu YF, Djurisic AB, Zhu CY, Fung S, Lu LW, Appl. Phys. Lett., 92, 222109 (2008)
- Yang Y, Sun XW, Tay BK, You GF, Tan ST, Teo KL, Appl. Phys. Lett., 93, 253107 (2008)
- Perillat-Merceroz G, Donatini F, Thierry R, Jouneau PH, Ferret P, Feuillet G, J. Appl. Phys., 111, 083524 (2012)
- Chen YJJ, Jen HW, Wong MS, Ho CH, Liang JH, Liu JT, Pang JH, J. Cryst. Growth, 362, 193 (2013)
- Manabu G, Naoko O, Kenichi O, Mikio K, Jpn. J. Appl. Phys., 42, 481 (2003)
- Yuan M, Yuan H, Jia Q, Chen Y, Jiang X, Wang H, J. Phys. D-Appl. Phys., 45, 85103 (2012)
- Lee W, Jeong MC, Myoung JM, Appl. Phys. Lett., 85, 6167 (2004)
- Jeong TS, Han MS, Youn CJ, Park YS, J. Appl. Phys., 96, 175 (2004)
- Ilyas U, Rawat RS, Tan TL, Lee P, Chen R, Sun HD, Fengji L, Zhang S, J. Appl. Phys., 110, 093522 (2011)