화학공학소재연구정보센터
Applied Energy, Vol.173, 134-140, 2016
An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
An accurate battery remaining useful life (RUL) estimation can facilitate the design of a reliable battery system as well as the safety and reliability of actual operation. A reasonable definition and an effective prediction algorithm are indispensable for the achievement of an accurate RUL estimation result. In this paper, the analysis of battery terminal voltage curves under different cycle numbers during charge process is utilized for RUL definition. Moreover, the relationship between RUL and charge curve is simulated by feed forward neural network (FFNN) for its simplicity and effectiveness. Considering the nonlinearity of lithium-ion charge curve, importance sampling (IS) is employed for FFNN input selection. Based on these results, an online approach using FFNN and IS is presented to estimate lithium-ion battery RUL in this paper. Experiments and numerical comparisons are conducted to validate the proposed method. The results show that the FFNN with IS is an accurate estimation method for actual operation. (C) 2016 Elsevier Ltd. All rights reserved.