화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.100, No.15, 6903-6915, 2016
A 1-year study of the activities of seven hydrolases in a communal wastewater treatment plant: trends and correlations
The activities of seven hydrolytic enzymes (L-alanine aminopeptidase, esterase, alpha-and beta-glucosidase, phosphomonoesterase, phosphodiesterase, sulfatase) were monitored during 1 year in parallel and serial treatment units of the biological stage of a communal wastewater treatment plant. The spatial homogeneity of enzyme activities was high (coefficients of variation < 10 % for the entire treatment stage). A significant difference between aerated and stirred tanks was not observed. Temperature seemed not to exert a direct influence. Long periods with comparably constant activities were interrupted by a few strong, short-time rises. The mean enzyme activities followed the sequence sulfatase < alpha-glucosidase < phosphodiesterase approximate to beta-glucosidase approximate to esterase < phosphomonoesterase < L-alanine aminopeptidase. The enzyme activities correlated among themselves at different levels. Very strong (r > 0.8) and highly significant (p < 0.01) correlations between the activities of both glucosidases, both phosphoesterases, and between phosphomonoesterase and both glucosidases were ascertained, pointing to the importance of substrate specificity and similarity of metabolic functions. Moderate and strong activity correlations with various wastewater constituents and with process parameters, e.g., concentrations, loads and eliminated amounts of phosphorous, TOC concentrations and loads of the plant effluent, dry matter content of activated sludge, and sludge volume, were found. The esterase activity was least correlated with other enzymes and often showed deviating dependencies on process parameters, raising questions concerning its appropriateness as a sum parameter for enzymatic and heterotrophic activity.