화학공학소재연구정보센터
Applied Surface Science, Vol.375, 26-34, 2016
Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge
Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 degrees C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, Xray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability. (C) 2016 Published by Elsevier B.V.