Bioresource Technology, Vol.216, 714-721, 2016
Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading
Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000 mg/L NH4+-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress. (C) 2016 Elsevier Ltd. All rights reserved.