화학공학소재연구정보센터
Chemical Engineering Communications, Vol.203, No.8, 1116-1124, 2016
Modeling Effects of Mass Transfer Rate and Catalyst Concentration on Biodiesel Production in Batch Reactors
This article presents a new approach to investigate the kinetics of sunflower and rapeseed oils methanolysis. Due to its heterogeneous nature, the methanolysis reaction is affected by different physical properties such as mass transfer coefficients and specific surface area of the dispersed phase. Considering these parameters, a model was developed, and was evaluated by comparing the results of the model with the experimental data found in the literature. The mean absolute deviation obtained for sunflower and rapeseed oils is 0.039 mol L-1, which demonstrates the accuracy of the model. The results show that the mixing speed is more effective in the first few minutes of the process. Furthermore, at mixing speed above 700 rpm, the process is controlled only by the reactions. The rate of biodiesel production increases with increasing catalyst concentration; however, catalyst concentration above 1.5 wt% has little or no significant effect on the rate of biodiesel production. In addition, because of its higher activation energy the rapeseed oil transesterification is more temperature dependent than the sunflower transesterification.