Energy & Fuels, Vol.30, No.6, 4825-4840, 2016
Compositional Changes to Low Water Content Bio-oils during Aging: An NMR, GC/MS, and LC/MS Study
Bio-oil generated by the fast pyrolysis of biomass is an unstable material, undergoing chemical and physical transformations as the oil ages at room temperature. In this study, electrostatic precipitator. (ESP) pine wood-derived bio-oil, which contains less water and does not undergo phase-separation upon aging, was characterized following accelerated aging. Bulk oil properties (percent water and viscosity) were found to increase in ways similar to conventional bio-oils. The imaged and-aged bib-oil samples were characterized by gel permeation chromatography (GPC), solvent fractionation, solution C-13 NMR, gas chromatography/mass spectrometry (GC/MS), and chip-based nanoelectrospray ionization, liquid chromatography, quadrupole time-of-flight (nanoESI-LC-QTOF) MS/MS. Using the formation of the silyated derivatives to extend the range of detectable compounds, GC/MS analysis was used to identify specific compounds that showed:, elevated reactivity, extending the understanding of reactivity characteristics beyond the known reactivity of aldehydes and Some aromatics to distinguishing the reactivity of ring-conjugated aromatics and certain polyhydroxylated benzenes; specifically the 1,3-di-, 1,2,3-tri-, and 1,2,4-trihydroxy substituted compounds. To explain the enhanced reactivity of these compounds, we propose acid-catalyzed formation of quinone methides, as important intermediates. Additionally, we find significant changes to the composition of mono- and disaccharides, where specific monosaccharides (arabinose, xylose, and glucose) increased in concentration With aging and high reactivity was observed for certain sugars with furano-ring mass spectral characteristics. In contrast, we also found that three anhydrosugars (levoglucosan, mannosan, and galactosan) were largely stable-with respect to aging. High mass resolution nanoESI-LC/MS/MS analyses of peracetylated samples permitted the analysis and chromatographic separation of both lignin and carbohydrate-derived oil components and were used for the identification of a putative formaldehyde trihydroxybenzene dieter. This work provides further insights into chemically specific entities and the processes responsible for bio-oil aging.