화학공학소재연구정보센터
Energy Conversion and Management, Vol.120, 135-143, 2016
Environmental performance assessment of utility boiler energy conversion systems
A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustain ability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before solar boiler technology can be widely used in the United States' utility power industry, its capital cost and the O&M cost should be reduced. Using the results of this research, decision-makers can make better-informed, environmentally-efficient selections of future utility scale boilers. (C) 2016 Elsevier Ltd. All rights reserved.