Journal of Colloid and Interface Science, Vol.477, 201-208, 2016
Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution
Nanocavities are empty voids exposed on the surface of one dimensional TiO2 nanostructured material. Often, they exhibited beneficial optical and electrical properties that leads to efficient photocatalytic reactions. This study reports formation of nanocavities on anatase TiO2 nanobelts (TNB) through dehydroxylation of surface hydroxyl groups during calcination process (350-600 degrees C). The morphological and crystal structure analysis of TNB-500, -550 and -600 displayed the nanobelts shape with high density of nano-size cavities and increase in average diameter with calcination temperature. The SAED patterns confirm the anatase TiO2 phase. The enhanced light absorption properties of biphasic anatasel TiO2-B and anatase TiO2 than H2Ti3O7 are attributed to transformation of crystal structure upon calcination process. The catalytic activity was evaluated for degradation of methyl orange dye in aqueous solution under solar light irradiation. The reaction variables such as calcination temperature, amount of catalyst and pH of the methyl orange dye solution were studied and discussed in detail. Under optimal experimental conditions TNB-550 photocatalyst displayed highest degradation performance about 8 folds higher than H2Ti3O7. The high performance is explained as due to synergistic properties of one dimensional anatase TiO2 with high density of nanocavities leading to one dimensional transfer of electrons and high absorption coefficient in UV-A spectrum are suitable for efficient red-ox reactions. (C) 2016 Elsevier Inc. All rights reserved.