화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.20, 3547-3553, 2016
Optical Excitation in Donor-Pt-Acceptor Complexes: Role of the Structure
The optical properties of the Pt complexes in the form of donor-metal-acceptor (D-M-A) were studied at the first-principles level. Calculated results show that for the frontier molecular orbitals (MOs) of a D-M-A structure the energies of unoccupied frontier MO can be mainly determined by the interaction between M and A, whereas the M-A and M-D interactions both determine the energies of occupied frontier MO. By developing a straightforward transition dipole decomposition method, we found that not only the local excitations in D but also those in A can significantly contribute to the charge-transfer (CT) excitation. Furthermore, the calculations also demonstrate that by tuning the dihedral angle between D and A the transition probability can be precisely controlled so as to broaden the spectrum region of photoabsorption. For the D-M-A molecule with a delocalized pi system in A, the CT excitation barely affects the electronic structures of metal, suggesting that the oxidation state of the metal can be kept during the excitation. These understandings for the optical properties of the D-M-A molecule would be useful for the design of dye-sensitized solar cells, photocatalysis, and luminescence systems.