Journal of Physical Chemistry B, Vol.120, No.26, 5831-5841, 2016
Nonlinear Mechanics of Athermal Branched Biopolymer Networks
Naturally occurring biopolymers such as collagen and actin form branched fibrous networks. The average connectivity in branched networks is generally below the isostatic threshold at which central force interactions marginally stabilize the network. In the submarginal regime, for connectivity below this threshold, such networks are unstable toward small deformations unless stabilized by additional interactions such as bending. Here we perform a numerical study on the elastic behavior of such networks. We show that the nonlinear mechanics of branched networks is qualitatively similar to that of filamentous networks with freely hinged cross-links. In agreement with a recent theoretical study,(1) we find that branched networks nonlinear mechanics consistent with athermal critical phenomena controlled by strain. We obtain the critical exponents capturing the nonlinear elastic behavior near the critical point by performing scaling analysis of the stiffening curves. We find that the exponents evolve with the connectivity in the network. We show that the nonlinear mechanics of disordered networks, independent of the detailed microstructure, can be characterized by a strain-driven second-order phase transition, and that the primary quantitative differences among different architectures are in the critical exponents describing the transition.